

📞 01980 677722 🛛 🖈 admin@jcpengineers.co.uk 🛛 🖵 www.jcpengineers.co.uk

Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD

Structural Design Calculations

for

Proposed Workshop and Store

<u>Site address</u> Amesbury Cricket Club, Archers Way, Amesbury, SP4 7WQ

Oct 2023 Ref: 16469/DA/SC01

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 4 admin@jcpengineers.co.uk			1
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

Brief:

JCP Engineers was appointed to carry out the structural design for the proposed workshop and store, a new building for the Amesbury Cricket Club on Archers Way, Amesbury.

Basis of the Design:

The scope of work covers the following structural design works:

- Specification of lintels over openings in all internal and external walls;
- Design of all associated masonry bearings;
- Design and detail reinforced concrete raft foundation

Robustness & Avoidance of Disproportionate Collapse:

The building is classed as a <u>Consequence Class 2a</u> building under the Building Regulations Part A with design guidance extract as follows:

In addition to the Consequence Class 1 measures, provide effective horizontal ties or effective anchorage of suspended floors to walls, as described in the Standards listed under paragraph 5.2 [not included here] for framed and load-bearing wall construction (the latter being defined in the paragraph 5.3 below [not included here]).

Design codes used:

BS 5268:	2002	"The Structural Use of Timber"
BS 5628:	1992	"Code of Practice for use of Masonry"
BS 5950:	2000	"The Structural Use of Steel in Building"
BS 5977:	1983	"Lintels"
BS 6399:	1997	"Loadings for Buildings"
BS 8004:	1986	"Code of Practice for Foundations"

Design software used:

Tekla Tedds 2023

Structural Analysis & Design

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722 7722	Page No:	2
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

Notes:

These calculations only apply to the structural elements included in these documents; if any discrepancies are found on site, the Engineer is to be informed. All architectural and building design requirements are to be provided by others.

Dimensions in these calculations are for design purposes only, having been scaled from copies of drawings. The building contractor is to obtain detailed dimensions from site measurements and is not to rely on those provided herein for fabrication purposes or procurement of materials.

The contractor is responsible for ensuring the stability of the structure at all times and that the works are carried out in strict compliance with all relevant Codes of Practice, Building Regulations and good building practice. All temporary support works required during the course of construction are the responsibility of the contractor.

Throughout the works the contractor / client is to be responsible for ensuring that the requirements of the Construction, Design and Management Regulations are complied with. Before any demolition works are undertaken, an R&D asbestos survey is recommended.

The Engineer believes that there are no foreseeable unusual risks that may arise during construction, maintenance, or use that a competent contractor could not foresee; however, due attention is to be given to ensuring a safe method of working and risk assessment is planned.

All structural steelwork and components are to be manufactured in accordance with the requirements of execution class EXC2 to BS EN 1090-2.

Architectural drawings:

992-05-C -	Building Regs – GF & Roof plan
992-06-B -	Building Regs – Section 01 & Details
992-07-A -	Building Regs – Section 02 & Elevations

Structural drawings:

16469-001 -	Subst	ructure	stru	ctural	arrangement
	~				

16469-101 - Ground floor structural arrangement

ß	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc 4 01980 677	ombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722 7722	Page No:	3
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

GENERAL LOADINGS DATA

Pitched roof load			
Rafters	=	0.20	kN/m²
Roof covering - artificial slate	=	0.15	kN/m²
Battens, felt, insulation, etc	=	0.18	kN/m²
Total pitched roof dead load	=	0.53	kN/m²
Roof pitch	=	20	0
Dead load on plan	=	0.56	kN/m²
Roof imposed load	=	0.60	kN/m²
Total roof load	=	1.16	kN/m²
Ceiling load			
Joists	=	0.15	kN/m²
Plasterboard ceiling & skim coat	=	0.20	kN/m²
Total ceiling dead load	=	0.35	kN/m²
Ceiling imposed load	=	0.25	kN/m²
Total ceiling load	=	0.60	kN/m²
Cavity wall load			
Brickwork outer leaf	=	2.20	kN/m²
Blockwork inner leaf	=	2.00	kN/m²
Plasterboard & skim coat	=	0.20	kN/m²
Total cavity wall load	=	4.40	kN/m²
Ground Floor Load			
Screed 75mm	=	1.80	kN/m²
Insulation, etc	=	0.20	kN/m²
Total floor dead load	=	2.00	kN/m²
Floor imposed load	=	4.00	kN/m²
Total floor load	_	6.00	kN/m ²
	-	0.00	IXI N/ III

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469		
Unit 7, Bosc 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722	Page No:	4		
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA		
Project type:	Proposed Workshop and Store	Date:	Oct 23		

RAFT FOUNDATION

Exter	nal wall	Inner leaf									
	Dead udl from Dead udl from Dead udl from	inner wall pitched roof ceiling	Total	= = =	3.00 6.10 6.10	x x x	2.20 0.56 0.35	= = =	6.60 3.42 2.14 12.15	kN/m kN/m kN/m kN/m	350mm
	Imposed udl from Imposed udl from	pitched roof ceiling	Total	= =	6.10 6.10	x x	0.60 0.25	= = =	3.66 1.53 5.19	kN/m kN/m kN/m	350mm
Exter	nal wall	Outer leaf									
	Dead udl from	outer wall	Total	=	3.44	x	2.20	=	7.57 7.57	kN/m kN/m	148mm
Interr	nal wall										
	Dead udl from	cavity wall	Total	=	3.00	х	4.40	=	13.20 13.20	kN/m kN/m	

Soil and raft definition Soil definition

Allowable bearing pressure Number of types of soil forming sub-soil Soil density Depth of hardcore beneath slab Depth of hardcore beneath thickenings Density of hardcore Basic assumed diameter of local depression

 $\begin{array}{l} q_{allow} = \textbf{75.0 \ kN/m^2} \\ \textbf{Two or more types} \\ \textbf{Firm to loose} \\ h_{hcoreslab} = \textbf{150} \ mm \ (Dispersal allowed for bearing pressure check) \\ h_{hcorethick} = \textbf{150} \ mm \ (Dispersal allowed for bearing pressure check) \\ \gamma_{hcore} = \textbf{20.0 \ kN/m^3} \\ \phi_{depbasic} = \textbf{3500} mm \end{array}$

Registered Office Address:

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc & 01980 677	ombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722	Page No:	5
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

Diameter under slab modified for hardcore $\phi_{depslab} = \phi_{depbasic} - h_{hcoreslab} = 3350 \text{ mm}$ Diameter under thickenings modified for hardcore $\phi_{depthick} = \phi_{depbasic} - h_{hcorethick} = 3350 \text{ mm}$ Raft slab definition Max dimension/max dimension between joints I_{max} = **16.500** m Slab thickness h_{slab} = **200** mm $f_{cu} = 35 \text{ N/mm}^2$ Concrete strength Poissons ratio of concrete v = **0.2** $f_{yslab} = 500 \text{ N/mm}^2$ Slab mesh reinforcement strength Partial safety factor for steel reinforcement $\gamma_{s} = 1.15$ From C&CA document 'Concrete ground floors' Table 5 Minimum mesh required in top for shrinkage A193 A393 (Asslabtop = 393 mm²/m) Actual mesh provided in top φ_{slabtop} = **10** mm Mesh bar diameter Cover to top reinforcement Ctop = **20** mm Average effective depth of top reinforcement $d_{tslabav} = h_{slab} - C_{top} - \phi_{slabtop} = 170 \text{ mm}$ Minimum effective depth of top reinforcement $d_{tslabmin} = d_{tslabav} - \phi_{slabtop}/2 = 165 \text{ mm}$ Edge beam definition Overall depth hedge = 600 mm Width b_{edge} = **450** mm Depth of boot h_{boot} = **375** mm bboot = 250 mm Width of boot Angle of chamfer to horizontal $\alpha_{edge} = 45 \text{ deg}$ $f_v = 500 \text{ N/mm}^2$ Strength of main bar reinforcement Strength of link reinforcement fys = 500 N/mm² Reinforcement provided in top 4 H20 bars (A_{sedgetop} = 1257 mm²) Reinforcement provided in bottom 4 H20 bars (Asedgebtm = 1257 mm²) Link reinforcement provided 2 H10 legs at 225 ctrs (Asv/sv = 0.698 mm) Bottom cover to links $C_{beam} = 35 \text{ mm}$ Effective depth of top reinforcement $d_{edgetop} = h_{edge} - c_{top} - \phi_{slabtop} - \phi_{edgelink} - \phi_{edgetop}/2 = 550 \text{ mm}$ Effective depth of bottom reinforcement $d_{edgebtm} = h_{edge}$ - Cbeam - $\phi_{edgebtm}/2 = 545 \text{ mm}$ Boot main reinforcement H10 bars at 225 ctrs (A_{sboot} = 349 mm²/m) Effective depth of boot reinforcement $d_{boot} = h_{boot}$ - C_{beam} - $\phi_{boot}/2 = 335 \text{ mm}$ Internal beam definition

Overall depth Width

Registered Office Address:

JCP STRUCTURAL AND CIV	/IL ENGINEERS Project Ref: 16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wilts 01980 677722 admin@jcpengineers.co.uk	shire, SP4 7SD Page No: 6
Site Address: Amesbury Cricket Club, Archers W	Vay, Amesbury DA
Project type: Proposed Workshop and Store	Date: Oct 23
Strength of main bar reinforcement Strength of link reinforcement Reinforcement provided in top Reinforcement provided in bottom Link reinforcement provided Effective depth of top reinforcement Effective depth of bottom reinforcement Internal slab design checks Basic loading Slab self weight Hardcore	
Applied loading Uniformly distributed dead load Uniformly distributed live load Slab load number 1	$w_{\text{Dudl}} = 2.0 \text{ kN/m}^2$ $w_{\text{Ludl}} = 4.0 \text{ kN/m}^2$
Load type Dead load Live load Ultimate load Line load width	Line load $w_{D1} = 6.6 \text{ kN/m}$ $w_{L1} = 0.0 \text{ kN/m}$ $w_{ult1} = 1.4 \times w_{D1} + 1.6 \times w_{L1} = 9.2 \text{ kN/m}$ $b_1 = 100 \text{ mm}$
Total uniform load at formation level Bearing pressure beneath load number 1 Effective loaded width Bearing pressure at formation level	$W_{udl} = W_{slab} + W_{hcoreslab} + W_{Dudl} + W_{Ludl} = 13.8 \text{ kN/m}^2$ $x_1 = b_1 + 2 \times (h_{slab} + h_{hcoreslab} \times tan(30)) = 673 \text{ mm}$ $a_4 = (W_{10} + W_{10})/x_4 + W_{10} = 23.6 \text{ kN/m}^2$
Internal slab bending and shear check Applied bending moments	$q_1 = (WD1 + WE1)/A1 + Wua = 23.0 KW11PASS - q <= qallow - Applied bearing pressure is less than allowable$
Effective span of slab Ultimate self weight udl Approximate self weight cantilever moment at edge Self weight shear force at edge Moments due to applied uniformly distributed load	$\begin{split} I_{slab} &= (\phi_{depslab} + d_{tslabav})/2 = 1760 \text{ mm} \\ w_{swult} &= 1.4 \times w_{slab} = 6.7 \text{ kN/m}^2 \\ M_{esw} &= (w_{swult} \times \pi \times I_{slab}^2) \times (I_{slab}/3) / (2 \times \pi \times I_{slab}) = 3.5 \text{ kNm/m} \\ V_{sw} &= w_{swult} \times I_{slab} / 2 = 5.9 \text{ kN/m} \end{split}$
Ultimate applied udl Approximate cantilever moment at edge Shear force at edge Moment due to load number 1	
Approximate equivalent udl Approximate cantilever moment at edge Shear force at edge Resultant moments and shears	
Total moment at edge Total shear force Reinforcement required in top	$M_{\Sigma e} = 15.0 \text{ kNm/m}$ $V_{\Sigma} = 25.6 \text{ kN/m}$
K ractor Lever arm Area of steel required for bending Minimum area of steel required Area of steel required PASS - Asslabtonea <= Asslabton - Area o	$\begin{split} \kappa_{slabtop} &= M_{\Sigma e'}(f_{cu} \times d_{tslabav}^2) = 0.015\\ z_{slabtop} &= d_{tslabav} \times \min(0.95, 0.5 + \sqrt{(0.25 - K_{slabtop}/0.9)}) = 161.5 \text{ mm}\\ A_{sslabtopbend} &= M_{\Sigma e'}((1.0/\gamma_s) \times f_{yslab} \times z_{slabtop}) = 214 \text{ mm}^2/\text{m}\\ A_{sslabmin} &= 0.0013 \times h_{slab} = 260 \text{ mm}^2/\text{m}\\ A_{sslabtopreq} &= \max(A_{sslabtopbend}, A_{sslabmin}) = 260 \text{ mm}^2/\text{m}\\ \text{of reinforcement provided in top to span local depressions is adequated} \end{split}$
Shear check Applied shear stress Tension steel ratio From BS8110-1:1997 - Table 3.8	$v = V_{\Sigma}/d_{tslabmin} = 0.155 \text{ N/mm}^2$ $\rho = 100 \times A_{sslabtop}/d_{tslabmin} = 0.238$

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722 7722	Page No:	7
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

vc = 0.547 N/mm²

Ratiobasic = 7.0

MF_{slab} = 2.000

 $M_{factor} = M_{\Sigma e}/d_{tslabav}^2 = 0.519 \text{ N/mm}^2$

 $Ratio_{allow} = Ratio_{basic} \times MF_{slab} = 14.000$

Wheorethick = γ heore × hheorethick = **3.0** kN/m²

 $w_{beam} = 24 \text{ kN/m}^3 \times h_{edge} \times b_{edge} = 6.5 \text{ kN/m}$

 $w_{boot} = 24 \text{ kN/m}^3 \times h_{boot} \times b_{boot} = 2.3 \text{ kN/m}$

Ratioactual = Islab/dtslabav = 10.353

Longitudinal line load

Longitudinal line load

WDedge1 = 12.2 kN/m

wLedge1 = 5.2 kN/m

b_{edge1} = **100** mm

x_{edge1} = 350 mm

WDedge2 = **7.6** kN/m WLedge2 = **0.0** kN/m

b_{edge2} = **100** mm

xedge2 = 148 mm

Transverse line load

WDedge3 = 13.2 kN/m

w_{Ledge3} = 0.0 kN/m

w_{Dtrans} = 13.2 kN/m

Wulttrans = 18.5 kN/m

pedgemom = 68293 mm

 $W_{Ltrans} = 0.0 \text{ kN/m}$

b_{trans} = 100 mm

b_{edge3} = **100** mm

 $f_s = 2/3 \times f_{yslab} \times A_{sslabtopbend}/A_{sslabtop} = 181.129 \text{ N/mm}^2$

 $MF_{slab} = min(2.0, 0.55 + [(477N/mm^2 - f_s)/(120 \times (0.9N/mm^2 + M_{factor}))])$

PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate

W_{chamfer} = 24 kN/m³ × (h_{edge} - h_{slab})²/(2 × tan(α_{edge})) = **1.9** kN/m

 $W_{slabelmt} = 24 \text{ kN/m}^3 \times h_{slab} \times (h_{edge} - h_{slab})/tan(\alpha_{edge}) = 1.9 \text{ kN/m}$

Wedge = Wbeam + Wboot + Wchamfer + Wslabelmt = 12.6 kN/m

 $W_{ultedge1} = 1.4 \times W_{Dedge1} + 1.6 \times W_{Ledge1} = 25.4 \text{ kN/m}$

 $W_{ultedge2} = 1.4 \times W_{Dedge2} + 1.6 \times W_{Ledge2} = 10.6 \text{ kN/m}$

 $w_{ultedge3} = 1.4 \times w_{Dedge3} + 1.6 \times w_{Ledge3} = 18.5 \text{ kN/m}$

 $I_{transapp} = b_{edge} + (h_{edge} - h_{slab})/tan(\alpha_{edge}) = 850 \text{ mm}$

 $W_{ulttrans} = W_{ulttrans} \times I_{transapp} = 15.7 \text{ kN}$

 $I_{trans} = 2 \times p_{edge} + b_{trans} = 6100 \text{ mm}$

 $p_{edge} = min(p_{edgemom}, 5 \times h_{edge}) = 3000 \text{ mm}$

 $b_{bearing} = b_{edge} + b_{boot} + (h_{edge} - h_{slab})/tan(\alpha_{edge}) = 1100 \text{ mm}$

Wudledge = WDudl+WLudl+Wedge/bbearing+Whcorethick = 20.4 kN/m²

 $M_{edgebtm} = (1.0/\gamma_s) \times f_y \times 0.9 \times d_{edgebtm} \times A_{sedgebtm} = \textbf{268.0 kNm}$

 $p_{edgemom} = [2 \times M_{edgebtm} + \sqrt{(4 \times M_{edgebtm}^2 + 2 \times W_{ulttrans} \times M_{edgebtm} \times b_{trans})]/W_{ulttrans}}$

PASS - $v \le v_c$ - Shear capacity of the slab is adequate

Design concrete shear strength

Internal slab deflection check

Basic allowable span to depth ratio Moment factor Steel service stress Modification factor

Modified allowable span to depth ratio Actual span to depth ratio

Edge beam design checks

Basic loading Hardcore Edge beam Rectangular beam element Boot element Chamfer element Slab element Edge beam self weight Edge load number 1 Load type Dead load Live load Ultimate load Longitudinal line load width Centroid of load from outside face of raft Edge load number 2 Load type Dead load Live load Ultimate load Longitudinal line load width Centroid of load from outside face of raft Edge load number 3 Load type Dead load Live load Ultimate load Transverse line load width Edge beam bearing pressure check Effective bearing width of edge beam Total uniform load at formation level Bearing pressure due to transverse line loads Total dead transverse line load Total live transverse line load Total ultimate transverse line load Minimum width of transverse line loads Length of trans line load applied to edge beam Total ult trans line load applied to edge beam Approx moment capacity of bottom steel Max allow dispersal based on moment capacity

Limiting max dispersal to say 5 x beam depth Total dispersal width of transverse line loads

JCP STRUCTURAL AND CIV	/IL ENGINEERS 16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wilts	shire, SP4 7SD Page No: 8
Site Address: Amesbury Cricket Club, Archers W	Vay, Amesbury DA
Project type: Proposed Workshop and Store	Date: Oct 23
Bearing pressure due to trans line loads Centroid of longitudinal and equivalent line loads	qtrans = (WDtrans + WLtrans) × ltransapp/(ltrans × Dbearing) = 1.7 kN/m ² from outside face of raft
Load x distance for edge load 1	Moment ₁ = Wultedge1 × Xedge1 = 8.9 kN
Load x distance for edge load 2	Moment ₂ = w _{ultedge2} × x _{edge2} = 1.6 kN
Sum of ultimate longitud'l and equivalent line loads	ΣUDL = 36.0 kN/m
Sum of load x distances	ΣMoment = 10.5 kN
Centroid of loads	$x_{bar} = \Sigma Moment / \Sigma UDL = 290 mm$
initially assume no moment transferred into slab o	due to load/reaction eccentricity
Sum of unfactored longitud'l and eff'tive line loads	ΣUDLsls = 25.0 kN/m
Allowable bearing width	$b_{allow} = 2 \times x_{bar} + 2 \times h_{hcoreslab} \times tan(30) = 754 \text{ mm}$
Bearing pressure due to line/point loads	$q_{\text{linepoint}} = \Sigma UDLsIs/b_{allow} = 33.2 \text{ kN/m}^2$
Total applied bearing pressure	Qedge = Qlinepoint + Qtrans + Wudledge = 55.3 kN/m ²
Edua haan kandina ahaal	PASS - q _{edge} <= q _{allow} - Allowable bearing pressure is not exceede
Edge beam bending check	
Divider for moments due to udi's	βudi = 10.0
Divider for moments due to point loads	$\beta_{\text{point}} = 6.0$
Applied bending moments	
Span of edge beam	$Iedge = \phi depthick + \Omega edgetop = 3900 \text{ mm}$
	$W_{edgeult} = 1.4 \times W_{edge} = 17.6 \text{ KN/m}$
Ultimate slab udi (approx) Wedgeslab =	= max(0 KN/m,1.4×Wslab×((φdepthick/2×3/4)-(Dedge+(Nedge-Nslab)/tan(αedge))))
Calf weight and alab handing memory	$W_{edgeslab} = 2.7 \text{ KIN/III}$
Sell weight and slab bending moment	$Wedgesw = (Wedgeult + Wedgeslab) \times Iedge^{-1}/pudl = 30.9 KINITI$
Sell weight shear force Moments due to applied uniformly distributed load	Vedgesw = (Wedgeult + Wedgeslab) × ledge/2 = 39.0 KIN
Illtimate udl (approx)	$W = -W = W = \sqrt{2 \times 3/4} - 11.6 \text{ kN/m}$
Bonding moment	Wedgeudi – Wudiutt × ψ depthick/2 × 3/4 – 11.0 KiV/II
Shoar force	
Moment and shear due to load number 1	Vedgeudl = Wedgeudl × Iedge/2 = 22.5 KIN
Bending moment	$M = 4 - W = 4 \times 1 + \frac{2}{3} = -38.6 \text{ kNm}$
Shoar force	$V_{\rm redge1} = W_{\rm redge1} \times {\rm redge} / {\rm pull} = 30.0 {\rm KNm}$
Moment and shear due to load number 2	Vedge1 = Wultedge1 × ledge/2 = 43.3 KIN
Rending moment	$M_{\rm s}$ data = Wells data $\propto 1_{\rm s}$ data $\frac{2}{3}$ Rest = 16.2 kNm
Shear force	with the set of the s
Moment and shear due to load number 3	v eage2 - vvuitedge2 × iedge/2 - 20.1 KIN
Illtimate point load	$W_{adap3} = W_{ultradap3} \times \frac{1}{2} $
Rending moment	$M_{odgo2} = W_{odgo2} \times \frac{1}{1000} = -15.1 \text{ kNm}$
Shear force	$V_{edge3} = W_{edge3} = 23.2 \text{ kN}$
Resultant moments and shears	
Total moment (hogging and sagging)	M _{Σedae} = 118.4 kNm
Maximum shear force	$V_{\Sigma edge} = 155.7 \text{ kN}$
Reinforcement required in top	
Width of section in compression zone	b _{edgetop} = b _{edge} + b _{boot} = 700 mm
Average web width	$b_w = b_{edge} + (h_{edge}/tan(\alpha_{edge}))/2 = 750 \text{ mm}$
K factor	$K_{edgetop} = M_{\Sigma edge} / (f_{cu} \times b_{edgetop} \times d_{edgetop}^2) = 0.016$
Lever arm	$z_{edgetop} = d_{edgetop} \times min(0.95, 0.5 + \sqrt{(0.25 - K_{edgetop}/0.9)}) = 523 mm$
Area of steel required for bending	Asedgetopbend = $M_{\Sigma edge}/((1.0/\gamma_s) \times f_V \times Z_{edgetop}) = 521 \text{ mm}^2$
Minimum area of steel required	Asedgetopmin = $0.0013 \times 1.0 \times b_w \times h_{edge} = 585 \text{ mm}^2$
Area of steel required	Asedgetopreg = $max(A_{sedgetopbend}, A_{sedgetoppmin}) = 585 \text{ mm}^2$
PASS - Asedgetopreg <= Asedge	etop - Area of reinforcement provided in top of edge beams is adequa
Reinforcement required in bottom	
Width of section in compression zone	$b_{edgebtm} = b_{edge} + (h_{edge} - h_{slab})/tan(\alpha_{edge}) + 0.1 \times I_{edge} = 1240 \text{ mm}$
K factor	$K_{edgebtm} = M_{\Sigma edge} / (f_{cu} \times b_{edgebtm} \times d_{edgebtm}^2) = 0.009$
Lever arm	z _{edgebtm} = d _{edgebtm} × min(0.95, 0.5 + √(0.25 - K _{edgebtm} /0.9)) = 518 mm
Area of steel required for bending	$A_{sedgebtmbend} = M_{\Sigma edge}/((1.0/\gamma_s) \times f_y \times z_{edgebtm}) = 526 \text{ mm}^2$
tered Office Address:	

JCP	STRUCTURAL AND	CIVIL ENGINEERS		16469
Unit 7, Bosco • 01980 677	ombe Centre, Mills Way, Amesbury, 722	Wiltshire, SP4 7SD .uk	Page No:	9
Site Address:	Amesbury Cricket Club, Arche	ers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Stor	e	Date:	Oct 23
Minimum area Area of steel re	of steel required quired	$\begin{array}{l} A_{\text{sedgebtmmin}} = 0.0013 \times 1.0 \times b_{\text{w}} \\ A_{\text{sedgebtmreq}} = max(A_{\text{sedgebtmbend}}, \end{array}$	× h _{edge} = 585 mm ² A _{sedgebtmmin}) = 585	mm²
	PASS - Asedgebtmreq <= Asedg	ebtm - Area of reinforcement provideo	l in bottom of edg	e beams is adequ
Edge beam sh	ear check		2 N/ 2	
Applied shear s		$V_{edge} = V_{\Sigma edge} / (D_w \times d_{edgetop}) = 0$.3// N/mm ²	
Tension steel ra	atio 1:1007 Table 2.8	$\rho_{edge} = 100 \times A_{sedgetop}/(D_w \times d_{edgetop})$	getop) = 0.305	
Design concret	e shear strength	$V_{\text{padea}} = 0.476 \text{ N/mm}^2$		
Design concret	e shear strengtri	$V_{cedge} = 0.470 \text{ N/min}$	m ² - Therefore mir	nimum links reau
Link area to spa	acing ratio required	Asy upon Syregedge = 0.4 N/mm ²	$\times b_{w}/((1.0/\gamma_{s}) \times f_{v_{s}}))$	= 0.690 mm
Link area to spa	acing ratio provided	A_{sv} _upon $s_{vorovedge} = N_{edgelink \times T}$	t×¢ _{edgelink} ² /(4×Svedge) = 0.698 mm
P	ASS - A_{sv} upon_svregedge <= A_{sv}	_upon_svprovedge - Shear reinforcemen	nt provided in eda	e beams is adequ
Boot design c	heck		Ū	
Effective cantile	ever span	$l_{boot} = b_{boot} + d_{boot}/2 = 418 \text{ mm}$		
Approximate ul	timate bearing pressure	$q_{ult} = 1.55 \times q_{allow} = 116.3 \text{ kN/m}$	1 ²	
Cantilever mor	nent	$M_{boot} = q_{ult} \times I_{boot}^2/2 = 10.1 \text{ kNm}$	n/m	
Shear force		$V_{boot} = q_{ult} \times I_{boot} = 48.5 \text{ kN/m}$	_	
K factor		$K_{boot} = M_{boot} / (f_{cu} \times d_{boot}^2) = 0.00$		
Lever arm	ement required	$Z_{\text{boot}} = a_{\text{boot}} \times \min(0.95, 0.5 + \sqrt{10})$	$(0.25 - K_{boot}/0.9)) =$	318 mm
Area of reinford		Asbootreq = $IVIboot/((1.0/\gamma_s) \times tyboot$	× Zboot) = 13 mm²/n wided in boot is a	ll Ideauate for ben
Applied shear s	FASS - Asbootreg	$V_{\text{hoot}} = V_{\text{hoot}}/d_{\text{hoot}} = 0.145 \text{ N/mm}$		acquate for bene
Tension steel r	atio	$0_{\text{boot}} = 100 \times \text{A}_{\text{shoot}}/\text{d}_{\text{hoot}} = 0.102$	4	
From BS8110-	1:1997 - Table 3.8		-	
Design concret	e shear strength	v _{cboot} = 0.348 N/mm ²		
• · ·		PASS - Vboot <= Vcboot - S	Shear capacity of	the boot is adequ
Corner design	checks			
Dasic loading	umber 1			
Load type		Line load in x direction		
Dead load		$W_{Dcorner1} = 12.2 \text{ kN/m}$		
∟ive load		WLcorner1 = 5.9 kN/m		
Ultimate load		W ultcorner1 = $1.4 \times W$ Dcorner1 + 1.6	× WLcorner1 = 26.5 k	N/m
Centroid of load	d from outside face of raft	y _{corner1} = 350 mm		
Corner load nu	umber 2			
Load type		Line load in y direction $\frac{12.2}{100}$		
Jeau load		$w_{Dcorner2} = 12.2 \text{ KIV/M}$		
Iltimate load		Wultcorner2 = $1.4 \times W_{Decrear2} \pm 1.6$	X WL corpor2 = 26 5 k	N/m
Centroid of load	d from outside face of raft umber 3	$x_{corner2} = 350 \text{ mm}$	A WECOMERZ - ZUJ N	, / ! ! !
Load type		Line load in x direction		
Dead load		WDcorner3 = 7.6 kN/m		
∟ive load		$W_{Lcorner3} = 0.0 \text{ kN/m}$		
Uitimate load	trom outside fees of tot	Wultcorner3 = $1.4 \times W_{Dcorner3} + 1.6$	× W _{Lcorner3} = 10.6 k	IN/M
Centrola of load	Inom outside face of fatt	ycorner3 = 148 mm		
Load type		Line load in v direction		
Dead load		$W_{Dcorner4} = 7.6 \text{ kN/m}$		
Live load		w _{Lcorner4} = 0.0 kN/m		
Ultimate load		W ultcorner4 = $1.4 \times W$ Dcorner4 + 1.6	× W _{Lcorner4} = 10.6 k	N/m
Centroid of load	d from outside face of raft	x _{corner4} = 148 mm		
Corner bearing	g pressure check	<u>-</u>		4 1 1 1 / 2
i otal uniform lo	ad at formation level	Wudlcorner = WDudl+WLudl+Wedge/bbe	$e_{aring} + W_{hcorethick} = 20$.4 KN/m²
المللم محيط الممالك	www.www.wow.ro.ro.wot.woo/pountloodo		m 1/101/004	

JCD	STRUCTURAL AND CIVI	LENGINEERS	Project Ref: 164	69
Unit 7, Bosco	ombe Centre, Mills Way, Amesbury, Wiltshi 722	re, SP4 7SD	Page No: 10)
Site Address:	Amesbury Cricket Club, Archers Wa	Engineer: DA	4	
Project type:	Proposed Workshop and Store		Date: Oct	23
Total line/poin	t loads			
Total unfactore	d line load in x direction	w _{Σlinex} = 25.7 kN/m		
Total ultimate li	ine load in x direction	$W_{\Sigma ultlinex} = 37.2 \text{ kN/m}$		
Total unfactore	d line load in y direction	$W_{\Sigma liney} = 25.7 \text{ kN/m}$		
Total ultimate li	ine load in y direction	W_{Σ} ultliney = 37.2 KN/M		
Total unfactore	a point load	$W_{\Sigma point} = 0.0 \text{ KN}$		
Length of side	of sa read to resist line/point loads	WSultpoint = U.U KIN	$(1)^2 \pm 4 \sqrt{\alpha}$	(2×a)
Length of side	or sq requito resist line/point loads	$p_{corner} = [W_{\Sigma} inex + W_{\Sigma} iney + V((W_{\Sigma} inex + W_{\Sigma} inex +$	ey) ++×4netcorner×w2point)]/	(Z×Ynetcorner)
Bending mom	ent about x-axis due to load/reaction e	eccentricity		
Moment due to	load 1 (x line)	$M_{x1} = max(0 \text{ kNm}, \text{Wultcorner1} \times \text{pcorner})$	\times (p _{corner} /2 - y _{corner1})) = 3.	.0 kNm
Moment due to	load 3 (x line)	$M_{x3} = max(0 \text{ kNm}, \text{wultcorner3} \times \text{p}_{corner})$	\times (p _{corner} /2 - y _{corner3})) = 3.	.2 kNm
Total moment a	about x axis	M _{Σx} = 6.3 kNm		
Bending mom	ent about y-axis due to load/reaction e	eccentricity		
Moment due to	load 2 (y line)	$M_{y2} = max(0 \text{ kNm}, w_{ultcorner2} \times p_{corner})$	\times (p _{corner} /2 - x _{corner2})) = 3.	.0 kNm
Moment due to	load 4 (y line)	$M_{y4} = max(0 \text{ kNm}, \text{ wultcorner4} \times \text{pcorner})$	\times (p _{corner} /2 - x _{corner4})) = 3.	.2 kNm
I otal moment a	about y axis	$M_{\Sigma y} = 6.3 \text{ kNm}$		
Max moment d	ue to load/reaction accentricity	$M_{\rm B} = max(M_{\rm B}, M_{\rm B}) = 6.3 \text{ kNm}$		
Assume all of the From edge bea	his moment is resisted by edge beam	$m_{\Sigma} = max(m_{\Sigma x}, m_{\Sigma y}) = 0.3 \text{ kmm}$		
Moment due to	edge beam spanning depression	M _{Σedge} = 118.4 kNm		
Total moment t	o be resisted	$M_{\Sigma cornerbp} = M_{\Sigma} + M_{\Sigma edge} = 124.7 \text{ kNr}$	n	
Width of section	n in compression zone	b _{edgetop} = b _{edge} + b _{boot} = 700 mm		
K factor		$K_{cornerbp} = M_{\Sigma cornerbp} / (f_{cu} \times b_{edgetop} \times d_{edgetop})$	edgetop ²) = 0.017	
Lever arm		$Z_{cornerbp} = d_{edgetop} \times min(0.95, 0.5 + \gamma)$	$(0.25 - K_{cornerbp}/0.9)) = 5$	23 mm
Total area of to	p steel required PASS - Ascornerbp <= Asedgetop - Are	$A_{scornerbp} = M_{\Sigma cornerbp} / ((1.0/\gamma_s) \times f_y \times z)$ a of reinforcement provided to res The allowable bearing pressure a	_{(cornerbp}) = 549 mm ² ist eccentric moment is at the corner will not be	s adequate e exceeded
Contilever spar	of edge beam	$1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{26}{2}$	14 mm	
Moment and s	bear due to self weight	Icorner – Wdepthick/ (2) + Gedgetop/2 – 20-		
Ultimate self we	eight udl	Wedgeult = $1.4 \times Wedge = 17.6 \text{ kN/m}$		
Average ultima	te slab udl (approx) W _{cornerslab} = m	$ax(0 \text{ kN/m}, 1.4 \times w_{\text{slab}} \times (\phi_{\text{depthick}}/(\sqrt{2}) \times 2))$ w _{cornerslab} = 2.2 kN/m	-(b _{edge} +(h _{edge} -h _{slab})/tan(o	(uedge))))
Self weight and	I slab bending moment	Mcornersw = (Wedgeult + Wcornerslab) × Icorr	_{er} ²/2 = 69.4 kNm	
Self weight and	I slab shear force	$V_{cornersw} = (W_{edgeult} + W_{cornerslab}) \times I_{corn}$	_{er} = 52.5 kN	
Moment and s	near due to udis			
Naximum uitim	late udi	$W_{\text{cornerudl}} = ((1.4 \times W_{\text{Dudl}}) + (1.6 \times W_{\text{Ludl}})) > M_{\text{cornerudl}} = M_{\text{cornerudl}} = \frac{2}{6} - 25 M_{\text{cornerudl}}$	$\langle \phi_{depthick}/\gamma(2) = 21.8 \text{ KIN/f}$	m
Shear force		V cornerud = W cornerud × Icorner/0 = 23.4	KINITI KI	
Moment and s	hear due to line loads in x direction			
Bending mome	ent	Mcorperlinex = W_{Σ} ultlinex × $I_{corper}^2/2 = 129$.9 kNm	
Shear force		$V_{cornerlinex} = W_{\Sigma}ultlinex \times I_{corner} = 98.2 \text{ km}$	1	
Moment and s	hear due to line loads in y direction			
Bending mome	ent -	$M_{\text{cornerliney}} = W_{\Sigma ultliney} \times I_{\text{corner}^2/2} = 129$.9 kNm	
Shear force		$V_{cornerliney} = w_{\Sigma ultliney} \times I_{corner} = 98.2 \text{ kM}$	1	
Total moment	s and shears due to point loads			
Bending mome	ent about x axis	$M_{cornerpointx} = 0.0 \text{ kNm}$		
Benaing mome	ent about y axis			
Resultant mor	ments and shears	\mathbf{v} cornerpoint = U.U KIN		
Total moment a	about x axis	M_{Σ} corners = Mcorners + Mcorneru + Mcorneru	arlinev+ Mcornerscipty = 224 6	kNm
Total shear for	ce about x axis	$V_{\Sigma corners} = V_{corners} + V_{cornerul} + V_{corner}$	nev + $V_{corperpoint} = 179.5 k$	N

JCP STRUCTURAL AND CIVIL	LENGINEERS	Project Ref: 16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshi 01980 677722 admin@jcpengineers.co.uk	ire, SP4 7SD	Page No: 11
Site Address: Amesbury Cricket Club, Archers Wa	y, Amesbury	Engineer: DA
Project type: Proposed Workshop and Store		Date: Oct 23
Total moment about y axis	MΣcornery = Mcornersw+ McornerudI+ Mcorner	erlinex+ Mcornerpointy = 224.6 kNm
Total shear force about y axis Deflection of both edge beams at corner will be the sam Design bending moment	$V_{\Sigma cornery} = V_{cornersw} + V_{cornerudl} + V_{cornerl}$ the therefore design for average of the $M_{\Sigma corner} = (M_{\Sigma cornerx} + M_{\Sigma cornery})/2 = 22$	_{inex} + V _{cornerpoint} = 179.5 kN se moments and shears 24.6 kNm
Reinforcement required in top of edge beam	$V_{\Sigma \text{corner}} = (V_{\Sigma \text{cornerx}} + V_{\Sigma \text{cornery}})/2 = 175$	9.5 KN
K factor	$K_{corner} = M_{\Sigma corner} / (f_{cu} \times b_{edgetop} \times d_{edgetop})$	$(top^2) = 0.030$
Lever arm	$z_{corner} = d_{edgetop} \times min(0.95, 0.5 + 0.00000000000000000000000000000000000$	0.25 - K _{corner} /0.9)) = 523 mm
Area of steel required for bending	Ascornerbend = $M_{\Sigma corner}/((1.0/\gamma_s) \times f_y \times z_s)$	_{corner}) = 989 mm ²
Minimum area of steel required	$A_{scornermin} = A_{sedgetopmin} = 585 \text{ mm}^2$	2
Area of steel required	Ascorner = max(Ascornerbend, Ascornermin)	= 989 mm²
PASS - Ascorner <= Asedgetop - Area of I	reinforcement provided in top of ed	ige beams at corners is adequa
Corner beam shear check	b = b + (b + /top(x +))/2 - 75	0 mm
Average web width	$D_W = D_{edge} + (T_{edge}/LaT((\alpha_{edge}))/2 = 73)$	5 N/mm ²
Tension steel ratio	$v_{corner} = v_{2}corner/(bw \times dedgetop) = 0.43$	= 0.305
From BS8110-1:1997 - Table 3.8	peomer - 100 x riseugelop (ow x deugelop)	- 0.000
Design concrete shear strength	Vccorner = 0.439 N/mm ²	
5	Vcorner <= Vccorner + 0.4N/mm ² - 7	Therefore minimum links require
Link area to spacing ratio required	$A_{sv_upon_s_{vreqcorner}} = 0.4N/mm^2 \times b_{vreqcorner}$	_w /((1.0/γs) × f _{ys}) = 0.690 mm
Link area to spacing ratio provided	$A_{sv_upon_svprovedge} = N_{edgelink} \times \pi \times \phi_{edgelink}$	_{gelink} ²/(4×s _{vedge}) = 0.698 mm
PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge -	Shear reinforcement provided in ea	lge beams at corners is adequa
Corner beam deflection check		
Basic allowable span to depth ratio	Ratiobasiccorner = 7.0	2 1 061 N/mm ²
Stool convice stroop	$IVI_{factorcorner} = IVI_{\Sigma corner}/(Dedgetop \times Oedgetor)$	pp^{2}) = 1.001 N/mm ²
Modification factor	Iscorner = $2/3 \times Iy \times Ascornerbend/Asedgetop$ ====================================	$b = 202.200 \text{ N/IIIII}^{-}$ /(120×(0.0N/mm ² +M(subsection))])
	$MF_{corpor} = 1 463$	
Modified allowable span to depth ratio	Ratioallowcorper = Ratiobasiccorper × MEc	orger = 10,238
Actual span to depth ratio	Ratioactualcorner = $I_{corner}/I_{dedgetop} = 4.80$	17
PASS - Ratio _{actu}	ualcorner <= Ratioallowcorner - Edge beal	m span to depth ratio is adequa
Internal beam design checks Basic loading	-	
Hardcore	Wheorethick = $\gamma_{hcore} \times h_{hcorethick} = 3.0 \text{ kN}$	/m²
Internal beam self weight	$w_{int} = 24 \text{ kN/m}^3 \times h_{int} \times b_{int} = 6.5 \text{ kN/m}^3$	m
Internal beam load number 1		
Load type	Longitudinal line load $w_{2} = 13.2 \text{ kN/m}$	
Live load	$W_{\text{lint1}} = 13.2 \text{ kN/m}$	
Ultimate load	$W_{\text{Lift}1} = 1.4 \times W_{\text{Dirt}1} + 1.6 \times W_{\text{Lint}1} = 1$	8-5 kN/m
Longitudinal line load width	$b_{int1} = 300 \text{ mm}$	
Centroid of load from centreline of beam	x _{int1} = 150 mm	
Internal beam bearing pressure check		
Total uniform load at formation level	Wudlint = W Dudl+ W Ludl+ W hcorethick+ 24 kN/	m ³ ×h _{int} = 23.4 kN/m ²
Sum of factored longitud'l and eff'tive line loads	$\Sigma UDL_{int} = 18.5 \text{ kN/m}$	
Sum of unfactored longitud'l and eff tive line loads	∑UDLsIs _{int} = 13.2 kN/m	
Load v distance for internal load 1	Momentian - Maining V V 2 9 KN	
Sum of load x distances	$\Sigma Moment_{int} = \mathbf{W} ultint1 \times Xint1 = 2.0 \text{ KIN}$	
Centroid of loads	$\Sigma_{\text{harint}} = \Sigma_{\text{homential}} / \Sigma_{\text{harint}} = 150.0$	mm
Moment due to eccentricity to be resisted by slab	$M_{\text{eccint}} = \sum \bigcup_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N$: :Nm/m
No slab bottom reinforcement therefore moment due to	eccentricity is resisted by top steel of	slab on one side only
Moment due to depression under slab (hogging)	M _{Σe} = 15.0 kNm/m	

JCD	STRUCTURAL AND CI	VIL ENGINEERS	Project Ref:	16469
Unit 7, Bosco	ombe Centre, Mills Way, Amesbury, W 722	Page No:	12	
Site Address:	Amesbury Cricket Club, Archers	Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store		Date:	Oct 23
Total moment t	to be resisted by slab top steel	$M_{slabtopint} = M_{eccint} + M_{\Sigma e} = 17.8 \text{ k}$	Nm/m	
K factor		$K_{slabtopint} = M_{slabtopint}/(f_{cu} \times d_{tslabmin})$	n^2) = 0.019	(0,0)) 457 mm
Area of steel re	auired	$Z_{\text{slabtopint}} = \alpha_{\text{tslabmin}} \times \min(0.95, 0.00)$ $A_{\text{sslabtopintrog}} = M_{\text{slabtopint}} / ((1.0/35))$	5 + V(0.25 - Kslabto(fuelab X Zelabtopint) =	$pint/0.9)) = 157 mm^{2}/m$
PA	$SS - A_{sslabtopintreg} \leq A_{sslabtop} - Area$	of reinforcement in top of slab is a	dequate to trans	fer moment into slab
Bearing press	sure		•	
Allowable bear	ing width	$b_{bearint} = b_{int} = 450 \text{ mm}$	$0.2 k N m^2$	
Total applied b	earing pressure	$q_{\text{linepointint}} = 200 \text{LSISint/Dearint} = 2$ $q_{\text{int}} = q_{\text{linepointint}} + w_{\text{udlint}} = 52.7 \text{ km}$	J/m ²	
		$PASS - q_{int} <= q_{allow} - Allowa$	ble bearing pres	sure is not exceeded
Internal beam	bending check		0,	
Divider for mon	nents due to udl's	βudl = 10.0		
Span of interna	ing moments	1		
Ultimate self w	eight udl	$W_{intult} = 1.4 \times W_{int} = 9.1 \text{ kN/m}$		
Ultimate slab u	dl (approx)	$W_{intslab} = max(0 \text{ kN/m}, 1.4 \times W_{slab})$	\times (($\phi_{depthick} \times 3/4$)	- b _{int})) = 13.9 kN/m
Self weight and	d slab bending moment	a = 34.9 kNm	,,	
Self weight she	ear force	$V_{intsw} = (W_{intult} + W_{intslab}) \times I_{int}/2 =$	44.7 kN	
Moments due	to applied uniformly distributed lo	ads		
Ultimate udi (aj	pprox)	Wintudl = Wudlult × φ depthick × 3/4 = 2 Mission = Wintudl × $\log^2/\theta_{\rm curl}$ = 35.2 k	23.1 KIN/M	
Shear force		$V_{intual} = W_{intual} \times I_{int} / pual = 33.2 K$ Vintual = Wintual × Iint/2 = 45.1 kN		
Moment and s	shear due to load number 1			
Bending mome	ent	$M_{int1} = W_{ultint1} \times I_{int}^2 / \beta_{udl} = 28.1 \text{ kM}$	١m	
Shear force		$V_{int1} = W_{ultint1} \times I_{int}/2 = 36.1 \text{ kN}$		
Resultant mor	ments and shears			
Maximum shea	ar force	$V_{\text{Sint}} = 96.2 \text{ KNIII}$		
Reinforcemen	it required in top			
Width of sectio	n in compression zone	$b_{inttop} = b_{int} = 450 \text{ mm}$		
Average web w	vidth	$b_{wint} = b_{int} = 450 \text{ mm}$		
K factor		$K_{inttop} = M_{\Sigma int} / (f_{cu} \times b_{inttop} \times d_{inttop}^{2}$) = 0.020	- 524 mm
Area of steel re	equired for bending	$\Delta_{\text{inttop}} = \alpha_{\text{inttop}} \times \Pi \Pi (0.95, 0.5 + 3)$ Asinttophond = M_{\text{int}} / ((1.0/3) \times f_{0.5} \times 5)	7(0.23 - Kinttop/0.9)) = 324
Minimum area	of steel	Asinttoppin = $0.0013 \times \text{bwint} \times \text{hint} =$	351 mm ²	
Area of steel re	equired	Asinttopreq = max(Asinttopbend, Asintto	_{pmin}) = 431 mm ²	
Deinfers	PASS - Asinttopreg <= Asintt	op - Area of reinforcement provided	d in top of interna	al beams is adequate
Width of costion	n required in bottom	$b_{mbm} = b_{mb} + 0.2 \times b_{mb} = 4220 \text{ m}$	m	
K factor	กาก รังการเรื่องการรังการรับการรับการรับการรับการรับการรับการรับการรับการรับการรับการรับการรับการรับการรับการร	$U_{\text{intbtm}} = U_{\text{int}} + U_{\text{i}} \times V_{\text{int}} = 1230 \text{ m}$ Kinthtm = Myint/(for x binthtm x distance)	$(1)^{2} = 0.008$	
Lever arm		$Z_{intbtm} = d_{intbtm} \times min(0.95, 0.5 +$	√(0.25 - K _{intbtm} /0.9)) = 520 mm
Area of steel re	equired for bending	Asintbtmbend = $M_{\Sigma int}/((1.0/\gamma_s) \times f_y \times$	z_{intbtm}) = 435 mm ²	· ·
Minimum area	of steel required	$A_{sintbtrmmin} = 0.0018 \times 1.0 \times b_{wint}$	\times h _{int} = 486 mm ²	
Area of steel re	equired	Asintbtmreq = max(Asintbtmbend, Asintb	$f(mmin) = 486 \text{ mm}^2$	l boome is adams to
Internal beam	PASS - Asintbtmreq <= Asintbtm shear check	Area of reinforcement provided in	bottom of interna	ai peams is adequate
Applied shear	stress	$V_{int} = V_{\Sigma int} / (b_{wint} \times d_{inttop}) = 0.507$	N/mm ²	
Tension steel r	atio	$\rho_{\text{int}} = 100 \times A_{\text{sinttop}} / (b_{\text{wint}} \times d_{\text{inttop}})$	= 0.243	
From BS8110-	1:1997 - Table 3.8	· · · · · · · · · · · · · · · · · · ·		
Design concret	te shear strength	$v_{cint} = 0.407 \text{ N/mm}^2$	2 Thoustons	
Link area to on	acing ratio required	$V_{int} \le V_{cint} + 0.4N/mn$	r - I neretore mil baad((1_0/a) ∨ f_)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Link area to sp	acing ratio required	$A_{sv} = UDOD = S_{vrequint} = 0.41N/11111^{2} \times A_{sv} = UDOD = S_{vrequint} = N_{vrequint} \times \pi \times h_{vreq}$	$U_{\text{wint}}((1.0/\gamma_{\text{s}}) \times I_{\text{ys}})$ $(1.0/\gamma_{\text{s}}) = 0.62$	- 0.414 11111 28 mm
PASS - A _{sv_} up	con_svreqint <= A _{sv} _upon_svprovint - S	chear reinforcement provided in int	ternal beams is a	dequate

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722	Page No:	13
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

LINTELS

Lintel L1

Dead udl from Dead udl from Dead udl from Dead udl from	outer leaf inner leaf pitched roof ceiling	= = =	0.40 0.40 6.10 6.10	x x x x	2.20 2.20 0.56 0.35	= = =	0.88 0.88 3.41 2.13	kN/m kN/m kN/m kN/m
Imposed udl from Imposed udl from	pitched roof ceiling	=	6.10 6.10	x x	0.60 0.25	= =	3.66 1.52	kN/m kN/m
	Total Load	=	12.49	х	2.79	=	34.78	kN

SL90 XHD 225	STANDARD LENGTHS (mm) Lintels are available in increments of 150mm	600 2100	2250 2700	2850 3300	3450 3900	4050 4200		
	Nominal Height "h" (mm)	225	225	225	225	225		
100mm outer leaf 90 - 105mm cavity	Weights (kg/m)	27.8	27.8	27.8	27.8	27.8		
100 - 115mm inner leaf	SWL 5:1 (kN)	79	60	49	41	40		
98 84 98	SWL 19:1 (kN)	66	51	41	34	33		
Suitable to support precast concrete floors, attic trusses, and point loads.	RM (kNm)	20.6	20.6	20.6	20.6	20.6		

Lintel L2

Dead udl from outer leaf					= 0.45	5 х	2.20	=	0.99	kN/m
Total Load					= 0.99) x	2.79	=	2.76	kN
STANDARD LENGTHS (mm) Lintels are available in increments of 150mm	600 1500	1650 1800	1950 2400	2550 3000	3150 3900	SL	100 T	R		
Nominal Height "h" (mm)	115	115	165	225	225		Γ	1-	Ìa	
Weights (kg/m)	3.3	5.0	6.2	7.6	7.6		Ĺ		omine	
SWL (kN)	8	12	12	17	15		ļ		ļ,	
RM (kNm)	1.4	1.4	3.6	5.8	5.8		ł	95		
See additional installation requirements on page 42.										

Registered Office Address:

		16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 01980 677722 admin@jcpengineers.co.uk	Page No:	14
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Dead udl from	inner leaf	=	0.40	x	2.20	=	0.88	kN/m	
Dead udl from	pitched roof	=	6.10	x	0.56	=	3.41	kN/m	
Dead udl from	ceiling	=	6.10	x	0.35	=	2.13	kN/m	
Imposed udl from	pitched roof	=	6.10	x	0.60	=	3.66	kN/m	
Imposed udl from	ceiling	=	6.10	x	0.25	=	1.52	kN/m	
Dead PL from Imposed PL from	GT HT04g GT HT04g					= =	12.60 9.80	kN kN	100mm 100mm

Support conditions Support A

Support B

Analysis results Maximum moment Maximum shear Vertically restrained Rotationally free Vertically restrained Rotationally free

IS		
ent	M _{max} = 18.7 kNm	M _{min} = 0 kNm
r	V _{max} = 56.5 kN	V _{min} = -25.6 kN

Registered Office Address:

C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

James Cunniffe Partnership Ltd.

Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 01980 677722 admin@jcpengineers.co.uk Site Address: Amesbury Cricket Club, Archers Way, Amesbury		Project Ref: 16469
		Page No: 15
		Engineer: DA
Project type: Proposed Workshop and Store		Date: Oct 23
Deflection Maximum reaction at support A Unfactored dead load reaction at support A	δ _{max} = 3.7 mm R _{A_max} = 56.5 kN R _{A_Dead} = 21.3 kN	δ _{min} = 0 mm R _{A_min} = 56.5 kN
Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B	R _{A_Imposed} = 16.7 kN R _{B_max} = 25.6 kN R _{B_Dead} = 9.7 kN	R _{B_min} = 25.6 kN
Unfactored imposed load reaction at support B Section details Section type	R _{B_Imposed} = 7.6 kN UB 178x102x19 (British Steel	Section Range 2022 (BS4-1))
Steel grade From table 9: Design strength pv	S355	
Thickness of element Design strength	max(T, t) = 7.9 mm	
Modulus of elasticity	$E = 205000 \text{ N/mm}^2$	
	Span 1 has lateral restraint at s	supports only
Effective length factors	K 1 00	
Effective length factor in minor axis	$K_{\rm x} = 1.00$	
Effective length factor for lateral-torsional buckling	$K_{LT,A} = 1.40 + 2 \times D$	
Classification of cross sections - Section 3.5	$K_{LT,B} = 1.40 + 2 \times D$	
Internal compression parts - Table 11	ε = √[275 N/mm² / p _y] = 0.88	
Depth of section	d = 146.8 mm	Class 1 plastic
Outstand flanges - Table 11	$u / t = 54.7 \times \varepsilon \leq -50 \times \varepsilon$	Class 1 plastic
Width of section	b = B / 2 = 50.6 mm	
	b / T = 7.3 × ε <= 9 × ε	Class 1 plastic Section is class 1 plas
Shear capacity - Section 4.2.3 Design shear force	$F_v = max(abs(V_{max}), abs(V_{min}))$	= 56.5 kN
-	Web does not i	need to be checked for shear buckl
Snear area Design shear resistance	$A_v = t \times D = 853 \text{ mm}^2$ $P_v = 0.6 \times p_y \times A_v = 181.8 \text{ kN}$	
	PASS - Design shear r	esistance exceeds design shear fo
Moment capacity - Section 4.2.5	M = max/aba/M	(1) - 19.7 k m
Design bending moment Moment capacity low shear - cl.4.2.5.2	$w_{c} = max(abs(M_{s1}max), abs(M_{s1}max), $	_min)) = 18.7 KNM x) = 60.8 kNm
Ettective length for lateral-torsional buckling - Sec	ction 4.3.5	
Effective length for lateral torsional buckling Slenderness ratio	$L_E = 1.4 \times L_{s1} + 2 \times D = 4255 \text{ m}$ $\lambda = L_E / r_{yy} = 179.235$	nm
Equivalent slenderness - Section 4.3.6.7		
Buckling parameter	u = 0.888	
I orsional index	x = 22.560	0.700
Sienderness factor	$v = 1 / [1 + 0.05 \times (\lambda / X)^2]^{0.25} =$	0.700
naliu - Ul.4.3.0.3 Faulivalent slenderness - cl / 3.6.7	$p_W = 1.000$	29
Limiting slenderness - Annex B.2.2	$\lambda_{L1} = \mathbf{u} \times \mathbf{v} \times \mathbf{\lambda} \times \mathbf{v}[pw] = 111.44$ $\lambda_{L0} = 0.4 \times (\pi^2 \times \mathbf{E} / \mathbf{p}_y)^{0.5} = 30.7$	 198 he made for lateral-torsional buck
Bending strength - Section 4.3.6.5	$\pi_{L1} > \pi_{L0}$ - Allowalice Siloula	
Robertson constant	αιτ = 7.0	
Perry factor	$\eta_{\text{LT}} = \max(\alpha_{\text{LT}} \times (\lambda_{\text{LT}} - \lambda_{\text{L0}}) / 100)$	00, 0) = 0.569
Euler stress	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} = 163 \text{ N/mm}^{2}$	
stered Office Address:		

JCP STRUCTURAL AND CIVIL ENGINEERS			16469
Unit 7, Bos 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 77722	Page No:	16
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23
	φιτ = (p _y + (ηιτ + 1) × p _E) / 2 = 305 .	3 N/mm ²	

Bending strength - Annex B.2.1 **Equivalent uniform moment factor - Section 4.3.6.6** Equivalent uniform moment factor for LTB **Buckling resistance moment - Section 4.3.6.4** Buckling resistance moment

m_{LT} = **1.000**

 $p_{\text{b}} = p_{\text{E}} \times p_{\text{y}} \, / \, (\phi_{\text{LT}} + (\phi_{\text{LT}}^2 - p_{\text{E}} \times p_{\text{y}})^{0.5}) = \textbf{117.3} \ \text{N/mm}^2$

Check vertical deflection - Section 2.5.2

JCP	STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Bosc 📞 01980 67	combe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 7722	Page No:	17
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

BEARINGS

Bearing A

Masonry details			
Masonry type	Aggregate concrete blo	ocks (25% or less formed voids)	
Compressive strength	p _{unit} = 3.6 N/mm ²	Mortar designation	iii
Least horiz dim of units	l _{unit} = 100 mm	Height of units	h _{unit} = 215 mm
Masonry units	Category II	Construction control	Normal
Partial safety factor	γ _m = 3.5	Characteristic strength	f _k = 3.5 N/mm ²
Leaf thickness	t = 100 mm	Effective wall thickness	t _{ef} = 100 mm
Wall height	h = 2400 mm	Effective height of wall	h _{ef} = 2400 mm
Bearing details		C C	
Beam spanning in plane of wall	l		
Width of bearing	B = 100 mm	Length of bearing	l _b = 350 mm
Loading details		. .	
Concentrated dead load	G _k = 20 kN	Concentrated imposed load	Q _k = 15 kN
Design concentrated load	F = 52.0 kN		
Distributed dead load	g _k = 0.0 kN/m	Distributed imposed load	q _k = 0.0 kN/m
Design distributed load	f = 0.0 kN/m	·	
Masonry bearing type			
Bearing type	Not applicable	Bearing safety factor	γbear = 1.00
Check design bearing without	it a spreader		
Design bearing stress	f _{ca} = 1.486 N/mm ²	Allowable bearing stress	f _{cp} = 1.000 N/mm ²
	FAIL - Design be	earing stress exceeds allowable be	aring stress, use a spreader
Spreader details			
Length of spreader	l _s = 600 mm	Depth of spreader	h _s = 215 mm
Edge distance	s _{edge} = 0 mm		
Spreader bearing type			
Bearing type	Туре 3	Bearing safety factor	γ _{bear} = 2.00
Check design bearing with a	spreader		-
Loading acts eccentrically outsi	ide middle third – triangular str	ess distribution	
Design bearing stress	f _{ca} = 1.981 N/mm ²	Allowable bearing stress	f _{cp} = 2.000 N/mm ²
	P	ASS - Allowable bearing stress ex	ceeds design bearing stress
Check design bearing at 0.4 >	h below the bearing level		
Design bearing stress	f _{ca} = 0.397 N/mm ²	Allowable bearing stress	f _{cp} = 0.605 N/mm ²
PASS - Allowable bearing str	ess at 0.4 × h below bearing	level exceeds design bearing stre	SS
J	9	5 5 5	

JCP STRUCTURAL AND CIVIL ENGINEERS		Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD • 01980 677722 admin@jcpengineers.co.uk		Page No:	18
Site Address:	Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type:	Proposed Workshop and Store	Date:	Oct 23

Bearing B

Masonry details				
Masonry type	Aggregate concrete blocks (25% or less formed voids)			
Compressive strength	p _{unit} = 3.6 N/mm ²	Mortar designation	iii	
Least horiz dim of units	l _{unit} = 100 mm	Height of units	h _{unit} = 215 mm	
Masonry units	Category II	Construction control	Normal	
Partial safety factor	γm = 3.5	Characteristic strength	f _k = 3.5 N/mm ²	
Leaf thickness	t = 100 mm	Effective wall thickness	t _{ef} = 100 mm	
Wall height	h = 2400 mm	Effective height of wall	h _{ef} = 2400 mm	
Bearing details				
Beam spanning in plane of wall				
Width of bearing	B = 100 mm	Length of bearing	l _b = 200 mm	
Loading details				
Concentrated dead load	G _k = 10 kN	Concentrated imposed load	$Q_k = 8 \text{ kN}$	
Design concentrated load	F = 25.7 kN			
Distributed dead load	g _k = 0.0 kN/m	Distributed imposed load	q _k = 0.0 kN/m	
Design distributed load	f = 0.0 kN/m			
Masonry bearing type				
Bearing type	Туре 2	Bearing safety factor	γ _{bear} = 1.50	
Check design bearing without a	spreader			
Design bearing stress	f _{ca} = 1.287 N/mm ²	Allowable bearing stress	f _{cp} = 1.500 N/mm ²	
	PAS	SS - Allowable bearing stress exc	ceeds design bearing stress	
Check design bearing at 0.4 × h	below the bearing level			
Design bearing stress	f _{ca} = 0.222 N/mm ²	Allowable bearing stress	f _{cp} = 0.605 N/mm ²	

PASS - Allowable bearing stress at 0.4 × h below bearing level exceeds design bearing stress