Structural Design Calculations

for

Proposed Workshop and Store

Site address
Amesbury Cricket Club, Archers Way,
Amesbury,

- ¢ STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 , admin@jcpengineers.co.uk	Page No:	1
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Brief:

JCP Engineers was appointed to carry out the structural design for the proposed workshop and store, a new building for the Amesbury Cricket Club on Archers Way, Amesbury.

Basis of the Design:

The scope of work covers the following structural design works:

- Specification of lintels over openings in all internal and external walls;
- Design of all associated masonry bearings;
- Design and detail reinforced concrete raft foundation

Robustness \& Avoidance of Disproportionate Collapse:

The building is classed as a Consequence Class 2a building under the Building Regulations Part A with design guidance extract as follows:

In addition to the Consequence Class 1 measures, provide effective horizontal ties or effective anchorage of suspended floors to walls, as described in the Standards listed under paragraph 5.2 [not included here] for framed and load-bearing wall construction (the latter being defined in the paragraph 5.3 below [not included here]).

Design codes used:

BS 5268:	2002	"The Structural Use of Timber"
BS 5628:	1992	"Code of Practice for use of Masonry"
BS 5950:	2000	"The Structural Use of Steel in Building"
BS 5977:	1983	"Lintels"
BS 6399:	1997	"Loadings for Buildings"
BS 8004:	1986	"Code of Practice for Foundations"

Design software used:

Tekla Tedds 2023
Structural Analysis \& Design

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD 601980677722 A admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	2
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Notes:

These calculations only apply to the structural elements included in these documents; if any discrepancies are found on site, the Engineer is to be informed. All architectural and building design requirements are to be provided by others.

Dimensions in these calculations are for design purposes only, having been scaled from copies of drawings. The building contractor is to obtain detailed dimensions from site measurements and is not to rely on those provided herein for fabrication purposes or procurement of materials.

The contractor is responsible for ensuring the stability of the structure at all times and that the works are carried out in strict compliance with all relevant Codes of Practice, Building Regulations and good building practice. All temporary support works required during the course of construction are the responsibility of the contractor.

Throughout the works the contractor / client is to be responsible for ensuring that the requirements of the Construction, Design and Management Regulations are complied with. Before any demolition works are undertaken, an R\&D asbestos survey is recommended.

The Engineer believes that there are no foreseeable unusual risks that may arise during construction, maintenance, or use that a competent contractor could not foresee; however, due attention is to be given to ensuring a safe method of working and risk assessment is planned.

All structural steelwork and components are to be manufactured in accordance with the requirements of execution class EXC2 to BS EN 1090-2.

Architectural drawings:

992-05-C -	Building Regs - GF \& Roof plan
$992-06-B-$	Building Regs - Section 01 \& Details
$992-07-A-$	Building Regs - Section 02 \& Elevations

Structural drawings:

16469-001 -	Substructure structural arrangement
16469-101 -	Ground floor structural arrangement

-T STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	3
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

GENERAL LOADINGS DATA

Pitched roof load

Rafters	$=0.20 \mathrm{kN} / \mathrm{m}^{2}$	
Roof covering - artificial slate	$=0.15 \mathrm{kN} / \mathrm{m}^{2}$	
Battens, felt, insulation, etc	$=0.18 \mathrm{kN} / \mathrm{m}^{2}$	
Total pitched roof dead load	$=0.53 \mathrm{kN} / \mathrm{m}^{2}$	
Roof pitch	$=20$	\circ
Dead load on plan	$=0.56 \mathrm{kN} / \mathrm{m}^{2}$	
Roof imposed load	$=0.60 \mathrm{kN} / \mathrm{m}^{2}$	
Total roof load	$=1.16 \mathrm{kN} / \mathrm{m}^{2}$	

Ceiling load

Joists
Plasterboard ceiling \& skim coat
$=0.15 \mathrm{kN} / \mathrm{m}^{2}$

Total ceiling dead load
Ceiling imposed load
Total ceiling load
$=0.20 \mathrm{kN} / \mathrm{m}^{2}$
$=0.35 \mathrm{kN} / \mathrm{m}^{2}$
$=0.25 \mathrm{kN} / \mathrm{m}^{2}$
$=0.60 \mathrm{kN} / \mathrm{m}^{2}$
Cavity wall load
Brickwork outer leaf
$=2.20 \mathrm{kN} / \mathrm{m}^{2}$
Blockwork inner leaf
Plasterboard \& skim coat
$=2.00 \mathrm{kN} / \mathrm{m}^{2}$

Total cavity wall load
$=0.20 \mathrm{kN} / \mathrm{m}^{2}$
$=4.40 \mathrm{kN} / \mathrm{m}^{2}$
Ground Floor Load
Screed 75mm
$=1.80 \mathrm{kN} / \mathrm{m}^{2}$
Insulation, etc
Total floor dead load
$=0.20 \mathrm{kN} / \mathrm{m}^{2}$

Floor imposed load
$=2.00 \mathrm{kN} / \mathrm{m}^{2}$

Total floor load
$=4.00 \mathrm{kN} / \mathrm{m}^{2}$
$=6.00 \mathrm{kN} / \mathrm{m}^{2}$

-9 STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 , admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	4
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

RAFT FOUNDATION

External wall

$\begin{array}{ll}\text { Dead udl from } & \text { inner wall } \\ \text { Dead udl from } & \text { pitched roo }\end{array}$
Dead udl from pitched roof ceiling

Imposed udl from Imposed udl from

External wall

Dead udl from
Inner leaf
inner wall
pitched roof ceiling

Outer leaf

outer wall

	$=3.00 \times 2.20$
	$=6.60$
	kN / m
	$=6.10 \mathrm{x} 0.56$
	$=3.42$
kN / m	
Total	

Total
$=6.10 \times 0.60=3.66 \mathrm{kN} / \mathrm{m}$
$=6.10 \times 0.25=1.53 \mathrm{kN} / \mathrm{m}$

350mm $=5.19 \mathrm{kN} / \mathrm{m} \quad 350 \mathrm{~mm}$

$$
=3.44 \times 2.20=7.57 \mathrm{kN} / \mathrm{m}
$$

$$
\text { Total } \quad=7.57 \mathrm{kN} / \mathrm{m} \quad 148 \mathrm{~mm}
$$

Internal wall

Dead udl from cavity wall

Soil and raft definition

Soil definition

Allowable bearing pressure
Number of types of soil forming sub-soil
qallow $=75.0 \mathrm{kN} / \mathrm{m}^{2}$
Soil density
Depth of hardcore beneath slab
Depth of hardcore beneath thickenings
Two or more types
Firm to loose
$h_{\text {hcoreslab }}=150 \mathrm{~mm}$ (Dispersal allowed for bearing pressure check)
hncorethick $=150 \mathrm{~mm}$ (Dispersal allowed for bearing pressure check)
$\gamma_{\text {hcore }}=\mathbf{2 0 . 0} \mathrm{kN} / \mathrm{m}^{3}$
Basic assumed diameter of local depression
$\phi_{\text {depbasic }}=3500 \mathrm{~mm}$

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

3n STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 , admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	5
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Diameter under slab modified for hardcore
Diameter under thickenings modified for hardcore

Raft slab definition

Max dimension/max dimension between joints
Slab thickness
Concrete strength
Poissons ratio of concrete
Slab mesh reinforcement strength
Partial safety factor for steel reinforcement
From C\&CA document 'Concrete ground floors' Table 5
Minimum mesh required in top for shrinkage
Actual mesh provided in top
Mesh bar diameter
Cover to top reinforcement
Average effective depth of top reinforcement
Minimum effective depth of top reinforcement

Edge beam definition

Overall depth
Width
Depth of boot
Width of boot
Angle of chamfer to horizontal
Strength of main bar reinforcement
Strength of link reinforcement
Reinforcement provided in top
Reinforcement provided in bottom
Link reinforcement provided
Bottom cover to links Effective depth of top reinforcement Effective depth of bottom reinforcement Boot main reinforcement
Effective depth of boot reinforcement Internal beam definition
$\phi_{\text {depslab }}=\phi_{\text {depbasic }}-$ h hcoreslab $=\mathbf{3 3 5 0} \mathrm{mm}$
$\phi_{\text {depthick }}=\phi_{\text {depbasic }}-\mathrm{h}_{\text {hcorethick }}=\mathbf{3 3 5 0} \mathrm{mm}$
$I_{\max }=16.500 \mathrm{~m}$
$\mathrm{h}_{\text {slab }}=\mathbf{2 0 0} \mathrm{mm}$
$\mathrm{f}_{\mathrm{cu}}=35 \mathrm{~N} / \mathrm{mm}^{2}$
$v=0.2$
$\mathrm{f}_{\mathrm{yslab}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma_{\mathrm{s}}=1.15$
A193
A393 (Asslabtop $=393 \mathrm{~mm}^{2} / \mathrm{m}$)
$\phi_{\text {slabtop }}=\mathbf{1 0 ~ m m}$
Ctop $=\mathbf{2 0} \mathrm{mm}$
$d_{\text {tslabav }}=h_{\text {slab }}-C_{\text {top }}-\phi_{\text {slabtop }}=\mathbf{1 7 0} \mathbf{~ m m}$
$d_{\text {tslabmin }}=d_{\text {tslabav }}-\phi_{\text {slabtop }} / 2=165 \mathrm{~mm}$
$h_{\text {edge }}=\mathbf{6 0 0} \mathrm{mm}$
$\mathrm{b}_{\text {edge }}=450 \mathrm{~mm}$
$h_{\text {boot }}=\mathbf{3 7 5} \mathrm{mm}$
$\mathrm{b}_{\text {boot }}=\mathbf{2 5 0} \mathrm{mm}$
$\alpha_{\text {edge }}=45 \mathrm{deg}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ys}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
4 H 20 bars $\left(A_{\text {sedgetop }}=1257 \mathrm{~mm}^{2}\right)$
4 H 20 bars (Asedgebtm $=1257 \mathrm{~mm}^{2}$)
2 H 10 legs at $225 \mathrm{ctrs}\left(\mathrm{A}_{\mathrm{sv}} / \mathrm{S}_{\mathrm{v}}=0.698 \mathrm{~mm}\right)$
Cbeam $=35 \mathrm{~mm}$
dedgetop $=h_{\text {edge }}-C_{\text {top }}-\phi_{\text {slabtop }}-\phi_{\text {edgelink }}-\phi_{\text {edgetop }} / 2=550 \mathrm{~mm}$
dedgebtm $=h_{\text {edge }}-$ Cbeam - Qedgelink $-\phi_{\text {edgebtm }} / 2=545 \mathrm{~mm}$
H 10 bars at $225 \mathrm{ctrs}\left(\mathrm{A}_{\text {sboot }}=349 \mathrm{~mm}^{2} / \mathrm{m}\right)$
$\mathrm{d}_{\text {boot }}=$ hboot $-\mathrm{Cbeam}-\phi$ boot $/ 2=\mathbf{3 3 5} \mathrm{mm}$

Overall depth
$h_{\text {int }}=600 \mathrm{~mm}$
Width
$b_{\text {int }}=450 \mathrm{~mm}$

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 1 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	6
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Strength of main bar reinforcement
Strength of link reinforcement
Reinforcement provided in top
Reinforcement provided in bottom
Link reinforcement provided
Effective depth of top reinforcement
Effective depth of bottom reinforcement

Internal slab design checks

Basic loading

Slab self weight
Hardcore
Applied loading
Uniformly distributed dead load
Uniformly distributed live load

Slab load number 1

Load type
Dead load
Live load
Ultimate load
Line load width
Internal slab bearing pressure check
Total uniform load at formation level
Bearing pressure beneath load number 1
Effective loaded width
Bearing pressure at formation level
Internal slab bending and shear check
Applied bending moments
Effective span of slab
Ultimate self weight udl
Approximate self weight cantilever moment at edge
Self weight shear force at edge
Moments due to applied uniformly distributed loads
Ultimate applied udl
Approximate cantilever moment at edge
Shear force at edge
Moment due to load number 1
Approximate equivalent udl
Approximate cantilever moment at edge
Shear force at edge
Resultant moments and shears
Total moment at edge
Total shear force
Reinforcement required in top
K factor
Lever arm
Area of steel required for bending
Minimum area of steel required
Area of steel required
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ys}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
3 H 16 bars $\left(A_{\text {sinttop }}=603 \mathrm{~mm}^{2}\right)$
3 H 16 bars ($A_{\text {sintbtm }}=603 \mathrm{~mm}^{2}$)
2 H 10 legs at $250 \mathrm{ctrs}\left(\mathrm{A}_{\mathrm{sv}} / \mathrm{S}_{\mathrm{v}}=0.628 \mathrm{~mm}\right)$
dinttop $=h_{\text {int }}-C_{\text {top }}-2 \times \phi_{\text {slabtop }}-\phi_{\text {inttop }} / 2=552 \mathrm{~mm}$
dintbtm $=h_{\text {int }}-$ Cbeam $-\phi_{\text {intlink }}-\phi_{\text {inttbtm }} / 2=547 \mathrm{~mm}$
$\mathrm{w}_{\text {slab }}=24 \mathrm{kN} / \mathrm{m}^{3} \times \mathrm{h}_{\text {slab }}=4.8 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {hcoreslab }}=\gamma_{\text {hcore }} \times h_{\text {hcoreslab }}=3.0 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {Dual }}=2.0 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {Lual }}=4.0 \mathrm{kN} / \mathrm{m}^{2}$
Line load
$\mathrm{W}_{\mathrm{D} 1}=6.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{L} 1}=0.0 \mathrm{kN} / \mathrm{m}$
$W_{\text {ult }}=1.4 \times W_{\text {D } 1}+1.6 \times W_{\text {L1 }}=9.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{b}_{1}=100 \mathrm{~mm}$
$W_{\text {udl }}=W_{\text {slab }}+W_{\text {hcoreslab }}+W_{\text {Dual }}+W_{\text {Ludl }}=13.8 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{x}_{1}=\mathrm{b}_{1}+2 \times\left(\mathrm{h}_{\text {slab }}+\mathrm{h}_{\text {hcoreslab }} \times \tan (30)\right)=\mathbf{6 7 3} \mathrm{mm}$
$\mathrm{q}_{1}=\left(\mathrm{w}_{\mathrm{D} 1}+\mathrm{w}_{\mathrm{L}}\right) / \mathrm{x}_{1}+\mathrm{w}_{\text {udl }}=23.6 \mathrm{kN} / \mathrm{m}^{2}$
PASS - q <= qallow - Applied bearing pressure is less than allowable
$\left.\right|_{\text {slab }}=\left(\phi_{\text {depslab }}+d_{\text {tslabav }}\right) / 2=\mathbf{1 7 6 0} \mathbf{~ m m}$
$\mathrm{W}_{\text {swult }}=1.4 \times \mathrm{W}_{\text {slab }}=6.7 \mathrm{kN} / \mathrm{m}^{2}$
$M_{\text {esw }}=\left(\mathrm{W}_{\text {swult }} \times \pi \times \mathrm{Islab}^{2}\right) \times(\mathrm{Islab} / 3) /\left(2 \times \pi \times \mathrm{I}_{\text {slab }}\right)=3.5 \mathrm{kNm} / \mathrm{m}$
$\mathrm{V}_{\text {sw }}=\mathrm{W}_{\text {swult }} \times \mathrm{I}_{\text {slab }} / 2=5.9 \mathrm{kN} / \mathrm{m}$
$W_{\text {udlult }}=1.4 \times W_{\text {Dudl }}+1.6 \times \mathrm{W}_{\text {Ludl }}=9.2 \mathrm{kN} / \mathrm{m}^{2}$
$M_{\text {eudl }}=\left(\right.$ Wudlult $\left.\times \pi \times \mathrm{I}_{\text {slab }}{ }^{2}\right) \times\left(\mathrm{I}_{\text {slab }} / 3\right) /\left(2 \times \pi \times \mathrm{I}_{\text {slab }}\right)=4.7 \mathrm{kNm} / \mathrm{m}$
$\mathrm{V}_{\text {udl }}=\mathrm{W}_{\text {udlullt }} \times I_{\text {slab }} / 2=8.1 \mathrm{kN} / \mathrm{m}$
$W_{\text {uall }}=1.5 \times \mathrm{W}_{\text {ult }} /\left(2 \times 0.3 \times \mathrm{I}_{\text {slab }}\right)=\mathbf{1 3 . 1} \mathrm{kN} / \mathrm{m}^{2}$
$M_{\text {e } 1}=\left(\mathrm{w}_{\text {udll }} \times \pi \times \mathrm{I}_{\text {slab }}{ }^{2}\right) \times\left(\mathrm{I}_{\text {slab }} / 3\right) /\left(2 \times \pi \times \mathrm{I}_{\text {slab }}\right)=6.8 \mathrm{kNm} / \mathrm{m}$
$\mathrm{V}_{1}=$ Wuall $\times \mathrm{I}_{\text {slab }} / 2=11.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{M}_{\mathrm{\Sigma e}}=15.0 \mathrm{kNm} / \mathrm{m}$
$\mathrm{V}_{\Sigma}=25.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{K}_{\text {slabtop }}=\mathrm{M}_{\Sigma \mathrm{z}} /\left(\mathrm{f}_{\text {cu }} \times \mathrm{d}_{\text {tslabav }}{ }^{2}\right)=\mathbf{0 . 0 1 5}$
$\mathrm{Z}_{\text {slabtop }}=\mathrm{d}_{\text {tslabav }} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-\mathrm{K}_{\text {slabtop }} / 0.9\right)\right)=161.5 \mathrm{~mm}$
$\mathrm{A}_{\text {sslabtopbend }}=\mathrm{M}_{\mathrm{\Sigma e}} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\text {yslab }} \times \mathrm{Z}_{\text {slabtop }}\right)=\mathbf{2 1 4} \mathrm{mm}^{2} / \mathrm{m}$
$A_{\text {sslabmin }}=0.0013 \times \mathrm{h}_{\text {slab }}=\mathbf{2 6 0 ~ m m}{ }^{2} / \mathrm{m}$
$A_{\text {sslabtopreq }}=\max \left(\mathrm{A}_{\text {sslabtopbend }}, \mathrm{A}_{\text {sslabmin }}\right)=\mathbf{2 6 0} \mathrm{mm}^{2} / \mathrm{m}$

PASS - $A_{\text {sslabtopreq }}<=A_{\text {sslabtop }}$ - Area of reinforcement provided in top to span local depressions is adequate

Shear check

Applied shear stress
$\mathrm{V}=\mathrm{V}_{\Sigma} / \mathrm{d}_{\text {tslabmin }}=0.155 \mathrm{~N} / \mathrm{mm}^{2}$
$\rho=100 \times \mathrm{A}_{\text {sslabtoo }} / \mathrm{d}_{\text {tslabmin }}=0.238$
Tension steel ratio
From BS8110-1:1997 - Table 3.8

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 1 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	7
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Design concrete shear strength
Internal slab deflection check
Basic allowable span to depth ratio
Moment factor
Steel service stress
Modification factor
Modified allowable span to depth ratio
Actual span to depth ratio

Edge beam design checks

Basic loading

Hardcore
Edge beam
Rectangular beam element
Boot element
Chamfer element
Slab element
Edge beam self weight
Edge load number 1
Load type
Dead load
Live load
Ultimate load
Longitudinal line load width
Centroid of load from outside face of raft
Edge load number 2
Load type
Dead load
Live load
Ultimate load
Longitudinal line load width
Centroid of load from outside face of raft
Edge load number 3
Load type
Dead load
Live load
Ultimate load
Transverse line load width
Edge beam bearing pressure check
Effective bearing width of edge beam
Total uniform load at formation level

Bearing pressure due to transverse line loads

Total dead transverse line load
Total live transverse line load
Total ultimate transverse line load
Minimum width of transverse line loads Length of trans line load applied to edge beam
Total ult trans line load applied to edge beam
Approx moment capacity of bottom steel
Max allow dispersal based on moment capacity
Limiting max dispersal to say $5 \times$ beam depth
Total dispersal width of transverse line loads
$\mathrm{V}_{\mathrm{c}}=0.547 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - $v<=v_{c}$ - Shear capacity of the slab is adequate
Ratio $_{\text {basic }}=7.0$
$M_{\text {factor }}=\mathrm{M}_{\mathrm{ze}} / \mathrm{d}_{\text {tslabav }}{ }^{2}=0.519 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{s}}=2 / 3 \times \mathrm{f}_{\mathrm{ys} \text { lab }} \times \mathrm{A}_{\text {sslabtopbend }} / \mathrm{A}_{\text {sslabtop }}=\mathbf{1 8 1 . 1 2 9 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
$\mathrm{MF}_{\text {slab }}=\min \left(2.0,0.55+\left[\left(477 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{f}_{\mathrm{s}}\right) /\left(120 \times\left(0.9 \mathrm{~N} / \mathrm{mm}^{2}+\mathrm{M}_{\text {factor }}\right)\right)\right]\right)$
$\mathrm{MF}_{\text {slab }}=2.000$
Ratioallow $=$ Ratio basic $\times \mathrm{MF}_{\text {slab }}=14.000$
Ratioactual $=\mathrm{I}_{\text {slab }} / \mathrm{d}_{\text {tslabav }}=10.353$
PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate

Whcorethick $=\gamma$ hcore $\times h_{\text {hcorethick }}=3.0 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {beam }}=24 \mathrm{kN} / \mathrm{m}^{3} \times \mathrm{h}_{\text {edge }} \times \mathrm{b}_{\text {edge }}=6.5 \mathrm{kN} / \mathrm{m}$
$w_{\text {boot }}=24 \mathrm{kN} / \mathrm{m}^{3} \times h_{\text {boot }} \times \mathrm{b}_{\text {boot }}=2.3 \mathrm{kN} / \mathrm{m}$
$W_{\text {chamfer }}=24 \mathrm{kN} / \mathrm{m}^{3} \times\left(\mathrm{h}_{\text {edge }}-\mathrm{h}_{\text {slab }}\right)^{2} /\left(2 \times \tan \left(\alpha_{\text {edge }}\right)\right)=1.9 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\text {slabelmt }}=24 \mathrm{kN} / \mathrm{m}^{3} \times \mathrm{h}_{\text {slab }} \times\left(\mathrm{h}_{\text {edge }}-\mathrm{h}_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)=1.9 \mathrm{kN} / \mathrm{m}$
$W_{\text {edge }}=W_{\text {beam }}+W_{\text {boot }}+W_{\text {chamfer }}+W_{\text {slabelmt }}=12.6 \mathrm{kN} / \mathrm{m}$
Longitudinal line load
$\mathrm{W}_{\text {Dedge }}=12.2 \mathrm{kN} / \mathrm{m}$
$W_{\text {Ledge1 }}=5.2 \mathrm{kN} / \mathrm{m}$
Wultedge1 $=1.4 \times$ WDedge $+1.6 \times$ Ledge $1=25.4 \mathrm{kN} / \mathrm{m}$
bedge $^{\text {e }}=\mathbf{1 0 0} \mathbf{~ m m}$
$X_{\text {edge }} 1=\mathbf{3 5 0} \mathrm{mm}$
Longitudinal line load
$\mathrm{W}_{\text {Dedge2 }}=7.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\text {Ledge2 }}=0.0 \mathrm{kN} / \mathrm{m}$
Wultedge2 $=1.4 \times$ WDedge2 $+1.6 \times$ Ledge2 $=\mathbf{1 0 . 6} \mathbf{k N} / \mathrm{m}$
$b_{\text {edge }}=100 \mathrm{~mm}$
$X_{\text {edge } 2}=148 \mathrm{~mm}$
Transverse line load
$\mathrm{w}_{\text {Dedge3 }}=13.2 \mathrm{kN} / \mathrm{m}$
$W_{\text {Ledge3 }}=0.0 \mathrm{kN} / \mathrm{m}$
$W_{\text {Lultedge3 }}=1.4 \times$ WDedge3 $+1.6 \times$ WLedge3 $=18.5 \mathrm{kN} / \mathrm{m}$
$b_{\text {edge }}=\mathbf{1 0 0} \mathbf{~ m m}$
$b_{\text {bearing }}=b_{\text {edge }}+b_{\text {boot }}+\left(h_{\text {edge }}-h_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)=1100 \mathrm{~mm}$
$W_{\text {udledge }}=$ WDudl + WLudl + Wedge $/$ bbearing + Whcorethick $=20.4 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {Dtrans }}=13.2 \mathrm{kN} / \mathrm{m}$
$W_{\text {Ltrans }}=0.0 \mathrm{kN} / \mathrm{m}$
$W_{\text {ultrans }}=18.5 \mathrm{kN} / \mathrm{m}$
$b_{\text {trans }}=\mathbf{1 0 0} \mathbf{~ m m}$
ltransapp $=$ bedge $+\left(\right.$ hedge $\left.-\mathrm{h}_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)=850 \mathrm{~mm}$
$W_{\text {ulttrans }}=$ Wultrrans $\times I_{\text {transapp }}=15.7 \mathrm{kN}$
$M_{\text {edgebtm }}=\left(1.0 / \gamma_{s}\right) \times f_{y} \times 0.9 \times d_{\text {edgebtm }} \times A_{\text {sedgebtm }}=\mathbf{2 6 8 . 0} \mathrm{kNm}$
pedgemom $^{\text {en }}=\left[2 \times M_{\text {edgebtm }}+\sqrt{ }\left(4 \times M_{\text {edgebtm }}{ }^{2}+2 \times W_{\text {ultrans }} \times M_{\text {edgebtm }} \times b_{\text {brans }}\right)\right] / W_{\text {ultrans }}$
pedgemom $=68293 \mathrm{~mm}$
pedge $=\min ($ pedgemom, $5 \times$ hedge $)=3000 \mathrm{~mm}$
Itrans $=2 \times$ pedge $+b_{\text {trans }}=6100 \mathrm{~mm}$

- P STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD〔01980677722 オ admin@jcpengineers.co.uk	Page No:	8
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Bearing pressure due to trans line loads $\quad q_{\text {trans }}=\left(W_{\text {Dtrans }}+W_{L \text { Lrans }}\right) \times I_{\text {transapp }} /\left(l_{\text {trans }} \times b_{\text {bearing }}\right)=1.7 \mathrm{kN} / \mathrm{m}^{2}$

Centroid of longitudinal and equivalent line loads from outside face of raft

Load x distance for edge load 1
Load x distance for edge load 2
Sum of ultimate longitud'l and equivalent line loads
Sum of load x distances
Centroid of loads
Moment $_{1}=$ Wultedge $^{1} \times$ Xedge $1=8.9 \mathrm{kN}$
Moment ${ }_{2}=$ Wultedge2 $\times \mathrm{X}_{\text {edge2 }}=\mathbf{1 . 6} \mathrm{kN}$
$\Sigma \mathrm{UDL}=36.0 \mathrm{kN} / \mathrm{m}$
Σ Moment $=10.5 \mathrm{kN}$
$\mathrm{x}_{\text {bar }}=\Sigma \mathrm{Moment} / \Sigma \mathrm{UDL}=290 \mathrm{~mm}$

Initially assume no moment transferred into slab due to load/reaction eccentricity

Sum of unfactored longitud'I and eff'tive line loads
Allowable bearing width
Bearing pressure due to line/point loads
Total applied bearing pressure
Edge beam bending check
Divider for moments due to udl's
Divider for moments due to point loads
Σ UDLsls $=25.0 \mathrm{kN} / \mathrm{m}$
ballow $=2 \times \mathrm{x}_{\text {bar }}+2 \times h_{\text {hcoreslab }} \times \tan (30)=754 \mathrm{~mm}$
linepoint $=\Sigma U D L s I s /$ ballow $=33.2 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {edge }}=$ qlinepoint $+q_{\text {trans }}+W_{\text {udledge }}=55.3 \mathrm{kN} / \mathrm{m}^{2}$
PASS $-q_{\text {edge }}<=q_{\text {allow }}$ - Allowable bearing pressure is not exceeded
$\beta_{u d l}=10.0$
Applied bending moments
Span of edge beam
Ultimate self weight udl
Ultimate slab udl (approx)
Self weight and slab bending moment
Self weight shear force
Moments due to applied uniformly distributed loads
Ultimate udl (approx)
Bending moment
Shear force
Moment and shear due to load number 1
Bending moment
Shear force
Moment and shear due to load number 2
Bending moment
Shear force
Moment and shear due to load number 3
Ultimate point load
Bending moment
Shear force
Resultant moments and shears
Total moment (hogging and sagging)
Maximum shear force
Reinforcement required in top
Width of section in compression zone
Average web width
K factor
Lever arm
Area of steel required for bending
Minimum area of steel required
Area of steel required
$\beta_{\text {point }}=6.0$
$l_{\text {ledge }}=$ ddepthick + dedgetop $=3900 \mathrm{~mm}$
$W_{\text {edgeult }}=1.4 \times W_{\text {edge }}=17.6 \mathrm{kN} / \mathrm{m}$
$W_{\text {edgeslab }}=\max \left(0 \mathrm{kN} / \mathrm{m}, 1.4 \times \mathrm{W}_{\text {slab }} \times\left(\left(\phi_{\text {depthick }} / 2 \times 3 / 4\right)-\left(\mathrm{b}_{\text {edge }}+\left(\mathrm{h}_{\text {edge }}-\mathrm{h}_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)\right)\right)\right)$
$\mathrm{W}_{\text {edgeslab }}=2.7 \mathrm{kN} / \mathrm{m}$
$M_{\text {edgesw }}=\left(W_{\text {edgeult }}+W_{\text {edgeslab }}\right) \times$ ledge $^{2} / \beta$ uall $=\mathbf{3 0 . 9} \mathrm{kNm}$
$V_{\text {edgesw }}=\left(W_{\text {edgeult }}+W_{\text {edgeslab }}\right) \times l_{\text {edge }} / 2=39.6 \mathrm{kN}$
$W_{\text {edgeudl }}=W_{\text {udlult }} \times \phi_{\text {depthick }} / 2 \times 3 / 4=11.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{M}_{\text {edgeudl }}=\mathrm{W}_{\text {edgeudl }} \times \mathrm{l}_{\text {ledge }}{ }^{2} / \beta_{\text {ual }}=\mathbf{1 7 . 6} \mathrm{kNm}$
$V_{\text {edgeudl }}=W_{\text {edgeudl }} \times l_{\text {edge }} / 2=\mathbf{2 2 . 5} \mathrm{kN}$
$M_{\text {edge }}=W_{\text {ultedge }} 1 \times \mathrm{l}_{\text {edge }}{ }^{2} / \beta_{\text {udl }}=\mathbf{3 8 . 6} \mathrm{kNm}$
$\mathrm{V}_{\text {edge } 1}=\mathrm{W}_{\text {ultedge }} \times \mathrm{l}_{\text {edge }} / 2=49.5 \mathrm{kN}$
$M_{\text {edge }}=W_{\text {ultedge } 2} \times \mathrm{l}_{\text {edge }}{ }^{2} / \beta_{\text {udl }}=\mathbf{1 6 . 2} \mathrm{kNm}$
$\mathrm{V}_{\text {edge2 }}=$ Wultedge $2 \times$ ledge $/ 2=\mathbf{2 0 . 7} \mathrm{kN}$
$\mathrm{W}_{\text {edge3 }}=$ Wultedge3 $\times \phi_{\text {deepthick }} / 2 \times 3 / 4=\mathbf{2 3 . 2} \mathrm{kN}$
$M_{\text {edge }}=W_{\text {edge }} \times l_{\text {edge }} / \beta_{\text {point }}=15.1 \mathrm{kNm}$
$V_{\text {edge } 3}=W_{\text {edge }}=\mathbf{2 3 . 2} \mathbf{~ k N}$
$M_{\text {Ledge }}=118.4 \mathrm{kNm}$
$V_{\text {Vedge }}=155.7 \mathrm{kN}$
$b_{\text {edgetop }}=b_{\text {edge }}+b_{\text {boot }}=\mathbf{7 0 0} \mathbf{~ m m}$
$\mathrm{b}_{\mathrm{w}}=\mathrm{b}_{\text {edge }}+\left(\mathrm{h}_{\text {edge }} / \tan \left(\alpha_{\text {edge }}\right)\right) / 2=750 \mathrm{~mm}$
$\mathrm{K}_{\text {edgetop }}=\mathrm{M}_{\text {Eedge }} /\left(\mathrm{f}_{\mathrm{cu}} \times \mathrm{b}_{\text {edgetop }} \times \mathrm{d}_{\text {edgetop }}{ }^{2}\right)=0.016$
$Z_{\text {edgetop }}=d_{\text {edgetop }} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-\mathrm{K}_{\text {edgetop }} / 0.9\right)\right)=523 \mathrm{~mm}$
$A_{\text {sedgetopbend }}=M_{\text {zedge }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{y}} \times\right.$ Zedgetop $)=521 \mathrm{~mm}^{2}$
$A_{\text {sedgetopmin }}=0.0013 \times 1.0 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{h}_{\text {edge }}=585 \mathrm{~mm}^{2}$
$A_{\text {sedgetopreq }}=\max \left(A_{\text {sedgetopbend }}, A_{\text {sedgetopmin }}\right)=585 \mathrm{~mm}^{2}$

PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate
Reinforcement required in bottom
Width of section in compression zone
$b_{\text {edgebtm }}=b_{\text {edge }}+\left(h_{\text {edge }}-h_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)+0.1 \times$ ledge $=1240 \mathrm{~mm}$
K factor
Lever arm
$K_{\text {edgebtm }}=\mathrm{M}_{\text {zedge }} /\left(\mathrm{f}_{\text {cu }} \times \mathrm{b}_{\text {edgebtm }} \times\right.$ dedgebt $\left.^{2}\right)=0.009$
Zedgebtm $=\operatorname{dedgebtm} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-K_{\text {edgebtm }} / 0.9\right)\right)=518 \mathrm{~mm}$
Area of steel required for bending
$A_{\text {sedgebtmbend }}=M_{\text {zedge }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {edgebtm }}\right)=526 \mathrm{~mm}^{2}$
Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 1 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	9
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Minimum area of steel required
Area of steel required
$A_{\text {sedgebtmmin }}=0.0013 \times 1.0 \times b_{w} \times h_{\text {edge }}=585 \mathrm{~mm}^{2}$
$A_{\text {sedgebtmreq }}=\max \left(A_{\text {sedgebtmbend }}, A_{\text {sedgebtmmin }}\right)=585 \mathrm{~mm}^{2}$

PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate

Edge beam shear check

Applied shear stress
$V_{\text {edge }}=\mathrm{V}_{\text {Ledge }} /\left(\mathrm{b}_{\mathrm{w}} \times\right.$ dedgetop $)=0.377 \mathrm{~N} / \mathrm{mm}^{2}$
Tension steel ratio
From BS8110-1:1997 - Table 3.8
Design concrete shear strength
$\rho_{\text {edge }}=100 \times \mathrm{A}_{\text {sedgetop }} /\left(\mathrm{b}_{\mathrm{w}} \times\right.$ dedgetop $)=0.305$

Link area to spacing ratio required
Link area to spacing ratio provided
$\mathrm{V}_{\text {cedge }}=0.476 \mathrm{~N} / \mathrm{mm}^{2}$
$v_{\text {edge }}<=v_{\text {cedge }}+0.4 \mathrm{~N} / \mathrm{mm}^{2}$ - Therefore minimum links required
$A_{\text {sv__ }}$ upon_Sureqedge $=0.4 \mathrm{~N} / \mathrm{mm}^{2} \times \mathrm{b}_{\mathrm{w}} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{ys}}\right)=\mathbf{0 . 6 9 0} \mathrm{mm}$
Asv_upon_Svprovedge $=N_{\text {edgelink }} \times \pi \times$ dedgelink $^{2} /(4 \times$ Svedge $)=0.698 \mathrm{~mm}$
PASS - Asv_upon_Svreqedge <= Asv_upon_Svprovedge - Shear reinforcement provided in edge beams is adequate

Boot design check

Effective cantilever span

$$
\begin{aligned}
& l_{\text {boot }}=\mathrm{b}_{\text {boot }}+\mathrm{d}_{\text {boot }} / 2=418 \mathrm{~mm} \\
& q_{u l t}=1.55 \times q_{\text {allow }}=116.3 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{M}_{\text {boot }}=\mathrm{qult} \times \mathrm{l}_{\text {boot }}{ }^{2} / 2=\mathbf{1 0 . 1} \mathrm{kNm} / \mathrm{m} \\
& \mathrm{~V}_{\text {boot }}=\mathrm{qult} \times \mathrm{I}_{\text {boot }}=48.5 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~K}_{\text {boot }}=\mathrm{Mboot}\left(\mathrm{f}_{\mathrm{cu}} \times \mathrm{dboot}^{2}\right)=\mathbf{0 . 0 0 3} \\
& Z_{\text {boot }}=d_{\text {boot }} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-K_{\text {boot }} / 0.9\right)\right)=318 \mathrm{~mm} \\
& A_{\text {sbootreq }}=M_{\text {boot }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times f_{\text {yboot }} \times \mathrm{Z}_{\text {boot }}\right)=73 \mathrm{~mm}^{2} / \mathrm{m}
\end{aligned}
$$

Approximate ultimate bearing pressure
Cantilever moment
Shear force
K factor
Lever arm
PASS - $A_{\text {sbootreq }}^{<=} A_{\text {sboot }}$ - Area of reinforcement provided in boot is adequate for bending
$\mathrm{V}_{\text {boot }}=\mathrm{V}_{\text {boot }} / \mathrm{d}_{\text {boot }}=0.145 \mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\text {boot }}=100 \times \mathrm{A}_{\text {sboot }} / \mathrm{d}_{\text {boot }}=\mathbf{0 . 1 0 4}$
$\mathrm{V}_{\text {cboot }}=0.348 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - $V_{b o o t ~}^{<=} V_{\text {cboot }}$ - Shear capacity of the boot is adequate

Corner design checks

Basic loading
Corner load number 1
Load type
Dead load
Live load
Ultimate load
Centroid of load from outside face of raft
Corner load number 2
Load type
Dead load
Live load
Ultimate load
Centroid of load from outside face of raft
Corner load number 3
Load type
Dead load
Live load
Ultimate load
Centroid of load from outside face of raft
Corner load number 4
Load type
Dead load
Live load
Ultimate load
Centroid of load from outside face of raft

Corner bearing pressure check

Total uniform load at formation level
Net bearing press avail to resist line/point loads

Line load in x direction

$W_{\text {Dcorner1 }}=12.2 \mathrm{kN} / \mathrm{m}$
WLcorner1 $=5.9 \mathrm{kN} / \mathrm{m}$
$W_{\text {ultcorner1 }}=1.4 \times \mathrm{W}_{\text {Dcorner1 }}+1.6 \times \mathrm{W}_{\text {Lcorner1 }}=\mathbf{2 6 . 5} \mathrm{kN} / \mathrm{m}$
Ycorner1 $=\mathbf{3 5 0} \mathrm{mm}$

Line load in y direction

$W_{\text {Dcorner2 }}=12.2 \mathrm{kN} / \mathrm{m}$
WLcorner2 $=5.9 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\text {ultcorner2 }}=1.4 \times \mathrm{W}_{\text {Dcorner2 }}+1.6 \times \mathrm{W}_{\text {Lcorner2 }}=\mathbf{2 6 . 5} \mathrm{kN} / \mathrm{m}$
$\mathrm{X}_{\text {corner } 2}=\mathbf{3 5 0} \mathrm{mm}$

Line load in x direction

WDcorner3 $=7.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\text {Lcorner3 }}=\mathbf{0 . 0} \mathrm{kN} / \mathrm{m}$
$W_{\text {ultcorner3 }}=1.4 \times$ WDoorner3 $+1.6 \times$ WLcorner3 $=\mathbf{1 0 . 6} \mathbf{~ k N} / \mathrm{m}$
Ycorner3 $=148 \mathrm{~mm}$

Line load in y direction

$\mathrm{W}_{\text {Dcorner4 }}=7.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\text {Lcorner4 }}=\mathbf{0 . 0} \mathrm{kN} / \mathrm{m}$
$W_{\text {ultcorner4 }}=1.4 \times W_{\text {Dcorner4 }}+1.6 \times W_{\text {Lcorner4 }}=10.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{X}_{\text {correr } 4}=148 \mathrm{~mm}$
Wudlcorner $=W_{\text {Dudl }}+W_{L u d l}+W_{\text {edge }} / W_{\text {bearing }}+W_{\text {hcorethick }}=20.4 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {netcorner }}=$ qallow - Wualcorner $=54.6 \mathrm{kN} / \mathrm{m}^{2}$

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 1 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	10
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Total line/point loads

Total unfactored line load in x direction
$W_{\text {Llinex }}=\mathbf{2 5 . 7} \mathrm{kN} / \mathrm{m}$
Total ultimate line load in x direction
$W_{\text {Eultinex }}=37.2 \mathrm{kN} / \mathrm{m}$
Total unfactored line load in y direction
Total ultimate line load in y direction
$W_{\text {Lliney }}=25.7 \mathrm{kN} / \mathrm{m}$

Total unfactored point load
Total ultimate point load
Length of side of sq reqd to resist line/point loads
$W_{\text {Eultliney }}=37.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\text {Ipoint }}=0.0 \mathrm{kN}$
$\mathbf{w}_{\text {Eultpoint }}=0.0 \mathrm{kN}$
$p_{\text {corner }}=\left[W_{\text {Elinex }}+W_{\text {Eliney }}+\sqrt{ }\left(\left(w_{\text {Llinex }}+W_{\text {Eliney }}\right)^{2}+4 \times q_{\text {netcorner }} \times W_{\text {Ipoint }}\right)\right] /\left(2 \times q_{\text {netcorner }}\right)$
pcorner $=942 \mathrm{~mm}$

Bending moment about x-axis due to load/reaction eccentricity

Moment due to load 1 (x line)
Moment due to load 3 (x line)
Total moment about x axis
$\mathrm{M}_{\mathrm{x} 1}=\max \left(0 \mathrm{kNm}, \mathrm{w}_{\text {ultcorner1 }} \times \mathrm{p}_{\text {corner }} \times\left(\mathrm{p}_{\text {corner }} / 2-\mathrm{y}_{\text {corner } 1}\right)\right)=3.0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{x} 3}=\max \left(0 \mathrm{kNm}\right.$, $\left.\mathrm{W}_{\text {ultcorner3 }} \times \mathrm{p}_{\text {corner }} \times\left(\mathrm{p}_{\text {corner }} / 2-\mathrm{y}_{\text {corner3 }}\right)\right)=3.2 \mathrm{kNm}$
$\mathrm{M}_{\Sigma \mathrm{x}}=6.3 \mathrm{kNm}$

Bending moment about y -axis due to load/reaction eccentricity

Moment due to load 2 (y line)
Moment due to load 4 (y line)
Total moment about y axis
$\mathrm{M}_{\mathrm{y} 2}=\max \left(0 \mathrm{kNm}\right.$, Wultcorner2 \times Pcorner $\times\left(\right.$ pcorner $\left.\left./ 2-\mathrm{X}_{\text {corner2 }}\right)\right)=3.0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{y} 4}=\max \left(0 \mathrm{kNm}, \mathrm{w}_{\text {ultcorner }} \times \mathrm{p}_{\text {corner }} \times\left(\mathrm{p}_{\text {correr }} / 2-\mathrm{X}_{\text {correr }} 4\right)\right)=3.2 \mathrm{kNm}$
$\mathrm{M}_{\Sigma y}=6.3 \mathrm{kNm}$

Check top reinforcement in edge beams for load/reaction eccentric moment
Max moment due to load/reaction eccentricity
$M_{\Sigma}=\max \left(M_{\Sigma x}, M_{\Sigma y}\right)=6.3 \mathrm{kNm}$
Assume all of this moment is resisted by edge beam
From edge beam design checks away from corners
Moment due to edge beam spanning depression
$M_{\text {Ledge }}=118.4 \mathrm{kNm}$
Total moment to be resisted
$\mathrm{M}_{\Sigma \text { cornerbp }}=\mathrm{M}_{\Sigma}+\mathrm{M}_{\text {zedge }}=124.7 \mathrm{kNm}$
Width of section in compression zone
$b_{\text {edgetop }}=$ bedge $+b_{\text {boot }}=\mathbf{7 0 0} \mathrm{mm}$
K factor
$\mathrm{K}_{\text {cornerbp }}=\mathrm{M}_{\text {corrnerbp }} /\left(\mathrm{f}_{\text {cu }} \times\right.$ bedgetop \times dedgetop $\left.^{2}\right)=0.017$
$\mathrm{Z}_{\text {cornerbp }}=$ dedgetop $\times \min \left(0.95,0.5+\sqrt{ }\left(0.25-\mathrm{K}_{\text {cornerbp }} / 0.9\right)\right)=523 \mathrm{~mm}$
Ascornerbp $=M_{\Sigma \text { cornerbp }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {cornerbp }}\right)=549 \mathrm{~mm}^{2}$
Total area of top steel required
of reinforcement provided to resist eccentric moment is adequate
The allowable bearing pressure at the corner will not be exceeded

Corner beam bending check

Cantilever span of edge beam
$I_{\text {corner }}=\phi_{\text {depthick }} / \sqrt{ }(2)+$ dedgetop $/ 2=\mathbf{2 6 4 4} \mathbf{~ m m}$
Moment and shear due to self weight
Ultimate self weight udl
$\mathrm{W}_{\text {edgeult }}=1.4 \times \mathrm{W}_{\text {edge }}=17.6 \mathrm{kN} / \mathrm{m}$
Average ultimate slab udl (approx)
$\mathrm{W}_{\text {cornerslab }}=\max \left(0 \mathrm{kN} / \mathrm{m}, 1.4 \times \mathrm{W}_{\text {slab }} \times\left(\right.\right.$ depthick $\left.\left./(\sqrt{ }(2) \times 2)-\left(\mathrm{b}_{\text {edge }}+\left(\mathrm{h}_{\text {edge }}-\mathrm{h}_{\text {slab }}\right) / \tan \left(\alpha_{\text {edge }}\right)\right)\right)\right)$
$\mathrm{w}_{\text {cornerslab }}=2.2 \mathrm{kN} / \mathrm{m}$
$M_{\text {cornersw }}=\left(W_{\text {edgeult }}+W_{\text {cornerslab }}\right) \times I_{\text {corner }}{ }^{2} / 2=69.4 \mathrm{kNm}$
$\mathrm{V}_{\text {cornersw }}=\left(\mathrm{W}_{\text {edgeult }}+\mathrm{W}_{\text {cornerslab }}\right) \times \mathrm{I}_{\text {corner }}=\mathbf{5 2 . 5} \mathbf{~ k N}$
Self weight and slab shear force
Moment and shear due to udls
Maximum ultimate udl
$W_{\text {cornerual }}=\left(\left(1.4 \times W_{\text {Dual }}\right)+\left(1.6 \times W_{\text {Lual }}\right)\right) \times \phi_{\text {depthick }} / V(2)=21.8 \mathrm{kN} / \mathrm{m}$
Bending moment
$\mathrm{M}_{\text {cornerudl }}=\mathrm{W}_{\text {cornerual }} \times \mathrm{I}_{\text {corner }}{ }^{2} / 6=\mathbf{2 5 . 4} \mathrm{kNm}$
Shear force
Moment and shear due to line loads in x direction
Bending moment
Shear force
Moment and shear due to line loads in y direction
Bending moment
$\mathrm{V}_{\text {cornerual }}=\mathrm{W}_{\text {cornerual }} \times \mathrm{I}_{\text {correr }} / 2=\mathbf{2 8 . 8} \mathrm{kN}$

Shear force
Total moments and shears due to point loads
Bending moment about x axis
Bending moment about y axis
Shear force

Resultant moments and shears

Total moment about x axis
Total shear force about x axis
$\mathrm{M}_{\text {cornerinex }}=\mathrm{w}_{\text {Eutlinex }} \times \mathrm{I}_{\text {corner }}{ }^{2} / 2=129.9 \mathrm{kNm}$
$\mathrm{V}_{\text {cornerlinex }}=\mathrm{W}_{\text {Euttinex }} \times \mathrm{I}_{\text {corner }}=98.2 \mathrm{kN}$
$M_{\text {corneriney }}=W_{\text {Eutliney }} \times \mathrm{I}_{\text {corner }}{ }^{2} / 2=129.9 \mathrm{kNm}$
$\mathrm{V}_{\text {cornerliney }}=\mathrm{W}_{\text {Eutliney }} \times \mathrm{I}_{\text {corner }}=98.2 \mathrm{kN}$
$M_{\text {cornerpointx }}=0.0 \mathrm{kNm}$
$\mathrm{M}_{\text {cornerpointy }}=0.0 \mathrm{kNm}$
$\mathrm{V}_{\text {cornerpoint }}=0.0 \mathrm{kN}$
$M_{\text {Ecornerx }}=\mathrm{M}_{\text {cornersw }}+\mathrm{M}_{\text {cornerual }}+\mathrm{M}_{\text {cornerliney }}+\mathrm{M}_{\text {cornerpointx }}=\mathbf{2 2 4 . 6} \mathrm{kNm}$
$\mathrm{V}_{\text {Ecornerx }}=\mathrm{V}_{\text {cornersw }}+\mathrm{V}_{\text {corneruall }}+\mathrm{V}_{\text {cornerliney }}+\mathrm{V}_{\text {cornerpoint }}=\mathbf{1 7 9 . 5} \mathrm{kN}$

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 A admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	11
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Total moment about y axis
Total shear force about y axis
$M_{\text {correry }}=M_{\text {cornersw }}+M_{\text {cornerudl }}+M_{\text {cornerlinex }}+M_{\text {cornerpointy }}=\mathbf{2 2 4 . 6} \mathrm{kNm}$
$\mathrm{V}_{\text {Ecornery }}=\mathrm{V}_{\text {cornersw }}+\mathrm{V}_{\text {cornerual }}+\mathrm{V}_{\text {cornerlinex }}+\mathrm{V}_{\text {cormerpoint }}=179.5 \mathrm{kN}$
Deflection of both edge beams at corner will be the same therefore design for average of these moments and shears
Design bending moment $\quad M_{\text {Ecorner }}=\left(M_{\text {Ecornerx }}+M_{\text {Ecornery }}\right) / 2=\mathbf{2 2 4 . 6} \mathrm{kNm}$
Design shear force
$\mathrm{V}_{\text {Ecorner }}=\left(\mathrm{V}_{\text {Ecornerx }}+\mathrm{V}_{\text {Ecornery }}\right) / 2=\mathbf{1 7 9 . 5} \mathrm{kN}$

Reinforcement required in top of edge beam

K factor
Lever arm
Area of steel required for bending
Minimum area of steel required
Area of steel required
PASS - $A_{\text {scorner }<=} A_{\text {sedgetop }}$ - Area of reinforcement provided in top of edge beams at corners is adequate

Corner beam shear check

Average web width
$\mathrm{b}_{\mathrm{w}}=\mathrm{b}_{\text {edge }}+\left(\mathrm{hedge}^{\text {edtan }}\left(\alpha_{\text {edge }}\right)\right) / 2=750 \mathrm{~mm}$
Applied shear stress
$\mathrm{V}_{\text {corner }}=\mathrm{V}_{\text {Ecorner }} /\left(\mathrm{b}_{\mathrm{w}} \times \mathrm{d}_{\text {edgetop }}\right)=0.435 \mathrm{~N} / \mathrm{mm}^{2}$
Tension steel ratio
$\rho_{\text {corner }}=100 \times \mathrm{A}_{\text {sedgetop }} /\left(\mathrm{b}_{\mathrm{w}} \times\right.$ dedgetop $)=0.305$
From BS8110-1:1997 - Table 3.8
Design concrete shear strength
$\mathrm{V}_{\text {ccorner }}=\mathbf{0 . 4 3 9 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
$\boldsymbol{v}_{\text {corner }}<=\boldsymbol{V}_{\text {ccorner }}+0.4 \mathrm{~N} / \mathrm{mm}^{2}$ - Therefore minimum links required
Link area to spacing ratio required
Link area to spacing ratio provided
$\mathrm{K}_{\text {corner }}=\mathrm{M}_{\text {ccorner }} /\left(\mathrm{f}_{\text {cu }} \times\right.$ bedgetop $\left.\times \mathrm{d}_{\text {edgetop }}{ }^{2}\right)=\mathbf{0 . 0 3 0}$
$Z_{\text {corner }}=d_{\text {edgetop }} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-\mathrm{K}_{\text {corner }} / 0.9\right)\right)=523 \mathrm{~mm}$
Ascornerbend $=\mathrm{M}_{\Sigma \text { corner }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}\right.$ corner $)=989 \mathrm{~mm}^{2}$
$A_{\text {scornermin }}=A_{\text {sedgetopmin }}=585 \mathrm{~mm}^{2}$
$A_{\text {scorner }}=\max \left(A_{\text {scornerbend }}, A_{\text {scornermin }}\right)=989 \mathrm{~mm}^{2}$

PASS - $A_{s v _}$upon_Svreqcorner <= $A_{s v _}$upon_svprovedge - Shear reinforcement provided in edge beams at corners is adequate

Corner beam deflection check

Basic allowable span to depth ratio
RatiObasiccorner $=7.0$
Moment factor
Steel service stress
$M_{\text {factorcorner }}=M_{\Sigma \text { corner }} /\left(\right.$ bedgetop \times dedgetop $\left.^{2}\right)=1.061 \mathrm{~N} / \mathrm{mm}^{2}$
Modification factor
$f_{\text {scorner }}=2 / 3 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{A}_{\text {scornerbend }} / A_{\text {sedgetop }}=\mathbf{2 6 2 . 2 6 8 ~ N} / \mathrm{mm}^{2}$
$\mathrm{MF}_{\text {corner }}=\min \left(2.0,0.55+\left[\left(477 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{f}_{\text {scorner }}\right) /\left(120 \times\left(0.9 \mathrm{~N} / \mathrm{mm}^{2}+\mathrm{M}_{\text {factorcorner }}\right)\right)\right]\right)$
$\mathrm{MF}_{\text {corner }}=1.463$
Modified allowable span to depth ratio
RatiOallowcorner $=$ Ratiobasiccorner \times MF $_{\text {cormer }}=\mathbf{1 0 . 2 3 8}$
Ratioactualcorner $=I_{\text {corner }} /$ dedgetop $=4.807$
PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate

Internal beam design checks

Basic loading

Hardcore
Internal beam self weight
Internal beam load number 1
Load type
Dead load
Live load
Ultimate load
Longitudinal line load width
Centroid of load from centreline of beam
$W_{\text {hcorethick }}=\gamma_{\text {hcore }} \times h_{\text {hcorethick }}=3.0 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {int }}=24 \mathrm{kN} / \mathrm{m}^{3} \times \mathrm{h}_{\text {int }} \times \mathrm{b}_{\text {int }}=\mathbf{6 . 5} \mathrm{kN} / \mathrm{m}$

Internal beam bearing pressure check
Total uniform load at formation level
Sum of factored longitud'l and eff'tive line loads
Sum of unfactored longitud'I and eff'tive line loads
Centroid of loads from centreline of internal beam
Load x distance for internal load 1
Sum of load x distances
Centroid of loads
Longitudinal line load
$W_{\text {Dint1 }}=13.2 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\text {Lint1 }}=0.0 \mathrm{kN} / \mathrm{m}$
Wultint1 $=1.4 \times$ WDint1 $+1.6 \times$ WLint1 $=\mathbf{1 8 . 5} \mathrm{kN} / \mathrm{m}$
$\mathrm{b}_{\mathrm{int1}}=\mathbf{3 0 0} \mathrm{mm}$
$\mathrm{Xint1}=150 \mathrm{~mm}$
$W_{\text {udlint }}=W_{\text {Dudl }}+W_{\text {Ludl }}+W_{\text {hcorethick }}+24 \mathrm{kN} / \mathrm{m}^{3} \times \mathrm{h}_{\text {int }}=23.4 \mathrm{kN} / \mathrm{m}^{2}$
Σ UDLint $=18.5 \mathrm{kN} / \mathrm{m}$
Σ UDLslsint $_{\text {int }}=13.2 \mathrm{kN} / \mathrm{m}$
Momentint1 $=$ Wultint1 $\times \mathrm{x}_{\text {int1 }}=2.8 \mathrm{kN}$
Σ Momentint $=2.8 \mathrm{kN}$
$X_{\text {barint }}=\Sigma$ Moment $_{\text {int }} / \Sigma U D L_{\text {int }}=150.0 \mathrm{~mm}$
$M_{\text {eccint }}=\Sigma U D L_{\text {int }} \times$ abs $($ Xbarint $)=2.8 \mathrm{kNm} / \mathrm{m}$
Moment due to eccentricity to be resisted by slab
No slab bottom reinforcement therefore moment due to eccentricity is resisted by top steel of slab on one side only
From slab bending check
Moment due to depression under slab (hogging) $\quad \mathrm{M}_{\Sigma e}=15.0 \mathrm{kNm} / \mathrm{m}$

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C 01980677722 , admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	12
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Total moment to be resisted by slab top steel
K factor
Lever arm
Area of steel required
PASS - Asslabtopintreq <= Asslabtop

Bearing pressure

Allowable bearing width
Bearing pressure due to line/point loads
$b_{\text {bearint }}=b_{\text {int }}=450 \mathrm{~mm}$
Total applied bearing pressure
qlinepointint $=\Sigma U D L s / S_{\text {int }} / b_{\text {bearint }}=29.3 \mathrm{kN} / \mathrm{m}^{2}$
qint $=$ qlinepointint + Wudlint $=52.7 \mathrm{kN} / \mathrm{m}^{2}$
PASS - $q_{\text {int }}<=q_{\text {allow }}$ - Allowable bearing pressure is not exceeded

Internal beam bending check

Divider for moments due to udl's
$\beta_{u d l}=10.0$
Applied bending moments
Span of internal beam
lint $=\phi$ depthick + dinttop $=3902 \mathrm{~mm}$
Ultimate self weight udl
Ultimate slab udl (approx)
Self weight and slab bending moment
Self weight shear force
Wintult $=1.4 \times$ Wint $=9.1 \mathrm{kN} / \mathrm{m}$
$W_{\text {intslab }}=\max \left(0 \mathrm{kN} / \mathrm{m}, 1.4 \times \mathrm{W}_{\text {slab }} \times\left(\left(\phi_{\text {depthick }} \times 3 / 4\right)-\mathrm{b}_{\text {int }}\right)\right)=13.9 \mathrm{kN} / \mathrm{m}$
$M_{\text {intsw }}=\left(w_{\text {intult }}+W_{\text {intslab }}\right) \times l_{\text {lint }}{ }^{2} / \beta_{\text {udl }}=34.9 \mathrm{kNm}$
$V_{\text {intsw }}=\left(W_{\text {intult }}+W_{\text {intslab }}\right) \times l_{\text {int }} / 2=44.7 \mathrm{kN}$
Moments due to applied uniformly distributed loads
Ultimate udl (approx)
Wintudl $=$ Wudlult \times ddepthick $\times 3 / 4=23.1 \mathrm{kN} / \mathrm{m}$
Bending moment
$M_{\text {intudl }}=W_{\text {intual }} \times \mathrm{lint}^{2} / \beta_{\text {ual }}=35.2 \mathrm{kNm}$
Shear force
Moment and shear due to load number 1
Bending moment
$V_{\text {intual }}=W_{\text {intudl }} \times l_{\text {int }} / 2=45.1 \mathrm{kN}$

Shear force
$M_{\text {int1 }}=W_{\text {ultint1 }} \times \operatorname{lint}^{2} / \beta$ udl $=\mathbf{2 8 . 1} \mathrm{kNm}$
$\mathrm{V}_{\text {int1 }}=$ Wultint1 $\times \operatorname{lint} / 2=36.1 \mathrm{kN}$
Resultant moments and shears
Total moment (hogging and sagging)
$\mathrm{M}_{\text {zint }}=98.2 \mathrm{kNm}$
Maximum shear force
$V_{\text {Eint }}=125.9 \mathrm{kN}$
Reinforcement required in top
Width of section in compression zone
$b_{\text {inttop }}=b_{\text {int }}=450 \mathrm{~mm}$
Average web width
$b_{\text {wint }}=b_{\text {int }}=450 \mathrm{~mm}$
K factor
$\mathrm{K}_{\text {inttop }}=\mathrm{M}_{\text {zint }} /\left(\mathrm{f}_{\text {cu }} \times \mathrm{b}_{\text {inttop }} \times \mathrm{d}_{\text {inttop }}{ }^{2}\right)=\mathbf{0 . 0 2 0}$
Zinttop $=\operatorname{dinttop} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-\mathrm{K}_{\text {inttop }} / 0.9\right)\right)=524 \mathrm{~mm}$
$A_{\text {sinttopbend }}=M_{\text {Eint }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{fy}_{\mathrm{y}} \times \mathrm{Z}_{\text {inttop }}\right)=431 \mathrm{~mm}^{2}$
$A_{\text {sinttopmin }}=0.0013 \times b_{\text {wint }} \times h_{\text {int }}=351 \mathrm{~mm}^{2}$
$A_{\text {sinttopreq }}=\max \left(A_{\text {sinttopbend }}, A_{\text {sinttopmin }}\right)=431 \mathrm{~mm}^{2}$
PASS - $A_{\text {sinttopreq }}^{\text {< }} A_{\text {sinttop }}$ - Area of reinforcement provided in top of internal beams is adequate
Reinforcement required in bottom
Width of section in compression zone
$\mathrm{b}_{\text {intbtm }}=\mathrm{b}_{\text {int }}+0.2 \times \mathrm{l}_{\text {int }}=\mathbf{1 2 3 0} \mathbf{~ m m}$
K factor
$\mathrm{K}_{\text {intbtm }}=\mathrm{M}_{\text {zint }} /\left(\mathrm{f}_{\text {cu }} \times \mathrm{b}_{\text {intbtm }} \times \mathrm{dintbtm}^{2}\right)=0.008$
Lever arm
$Z_{\text {intbtm }}=\operatorname{dinttbtm} \times \min \left(0.95,0.5+\sqrt{ }\left(0.25-K_{\text {intbtm }} / 0.9\right)\right)=520 \mathrm{~mm}$
Area of steel required for bending
$A_{\text {sinttotmbend }}=\mathrm{M}_{\text {zint }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {intitbm }}\right)=435 \mathrm{~mm}^{2}$
Minimum area of steel required
$A_{\text {sinttotmmin }}=0.0018 \times 1.0 \times b_{\text {wint }} \times h_{\text {hint }}=486 \mathrm{~mm}^{2}$
Area of steel required
$A_{\text {sintbtmreq }}=\max \left(A_{\text {sintbtmbend }}, A_{\text {sintbtmmin }}\right)=486 \mathrm{~mm}^{2}$
PASS - $A_{\text {sintbtmreq }}<=A_{\text {sintbtm }}$ - Area of reinforcement provided in bottom of internal beams is adequate
Internal beam shear check
Applied shear stress $\quad V_{\text {int }}=V_{\text {sint }} /\left(b_{\text {wint }} \times d_{\text {inttop }}\right)=0.507 \mathrm{~N} / \mathrm{mm}^{2}$
Tension steel ratio
From BS8110-1:1997 - Table 3.8
Design concrete shear strength
$\rho_{\text {int }}=100 \times A_{\text {sinttop }} /\left(b_{\text {wint }} \times\right.$ dinttop $)=0.243$
$V_{\text {cint }}=0.407 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\text {int }}<=V_{\text {cint }}+0.4 \mathrm{~N} / \mathrm{mm}^{2}$ - Therefore minimum links required
Link area to spacing ratio required
Asv_upon_Svreqint $=0.4 \mathrm{~N} / \mathrm{mm}^{2} \times \mathrm{b}_{\text {wint }} /\left(\left(1.0 / \gamma_{\mathrm{s}}\right) \times \mathrm{f}_{\mathrm{ys}}\right)=0.414 \mathrm{~mm}$
$A_{\text {sv__upon_Suprovint }}=N_{\text {inttink }} \times \pi \times$ Qinttink $^{2} /(4 \times$ Svint $)=0.628 \mathrm{~mm}$
PASS - Asv_upon_Svreqint <= $A_{s v _}$upon_Svprovint - Shear reinforcement provided in internal beams is adequate
Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

- STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 admin@jcpengineers.co.uk	Page No:	13
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

LINTELS

Lintel L1

Dead udl from	outer leaf	=	0.40	X	2.20	=	0.88	kN/m
Dead udl from	inner leaf	=	0.40	x	2.20	=	0.88	kN/m
Dead udl from	pitched roof	=	6.10	X	0.56	=	3.41	kN / m
Dead udl from	ceiling	=	6.10	x	0.35	=	2.13	kN/m
Imposed udl from	pitched roof	=	6.10	x	0.60	=	3.66	kN/m
Imposed udl from	ceiling	=	6.10	X	0.25	=	1.52	kN / m
	Total Load	=	12.49	x	2.79	=	34.78	kN

Lintel L?

| Dead udl fromouter leaf $=0.45 \times 2.20$ | $=0.99 \mathrm{kN} / \mathrm{m}$ | |
| :--- | :--- | :--- | :--- |
| | Total Load | $=0.99 \times 2.79=2.76 \mathrm{kN}$ |

STANDARD LENGTHS (mm) Lintels are available in increments of 150 mm	600 1500	$\mathbf{1 6 5 0}$	1950	$\mathbf{1 9 5 5 0}$	3150
Nominal Height "h" (mm)	115	115	165	225	225
Weights (kg/m)	3.3	5.0	6.2	7.6	7.6
SWL (kN)	8	12	12	17	15
RM (kNm)	1.4	1.4	3.6	5.8	5.8

SL100 TR

See additional installation requirements on page 42.

- \sim STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 admin@jcpengineers.co.uk	Page No:	14
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

BEAM

Dead udl from	inner leaf	$=$	0.40	X	2.20	$=$	0.88	kN/m	
Dead udl from	pitched roof	=	6.10	x	0.56	=	3.41	kN/m	
Dead udl from	ceiling	=	6.10	X	0.35	=	2.13	kN / m	
Imposed udl from	pitched roof	=	6.10	X	0.60	=	3.66	kN / m	
Imposed udl from	ceiling	=	6.10	X	0.25	=	1.52	kN / m	
Dead PL from	GT HT04g					=	12.60	kN	100 mm
Imposed PL from	GT HT04g					=	9.80	kN	100 mm

Support conditions

Support A
Vertically restrained
Rotationally free
Support B
Vertically restrained
Rotationally free
Analysis results
Maximum moment
Maximum shear
$M_{\text {max }}=18.7 \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=\mathbf{0} \mathrm{kNm}$
$\mathrm{V}_{\text {max }}=56.5 \mathrm{kN}$
$V_{\text {min }}=-25.6 \mathrm{kN}$

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 λ admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	15
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Deflection

Maximum reaction at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Maximum reaction at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B

Section details

Section type
Steel grade
From table 9: Design strength p_{y}
Thickness of element
Design strength
Modulus of elasticity
Lateral restraint

Effective length factors

Effective length factor in major axis
Effective length factor in minor axis
Effective length factor for lateral-torsional buckling

Classification of cross sections - Section 3.5

Internal compression parts - Table 11
Depth of section

Outstand flanges - Table 11

Width of section
$\delta_{\text {max }}=3.7 \mathrm{~mm} \quad \delta_{\text {min }}=0 \mathrm{~mm}$
$R_{\mathrm{A}_{_} \max }=56.5 \mathrm{kN}$
$R_{A_{\min }}=56.5 \mathrm{kN}$
$R_{A _ \text {Dead }}=21.3 \mathrm{kN}$
$R_{A} _$Imposed $=16.7 \mathrm{kN}$
RB_max $=\mathbf{2 5 . 6} \mathrm{kN} \quad \mathrm{RB}_{\mathrm{B}} \min =\mathbf{2 5 . 6} \mathrm{kN}$
R_{B} Dead $=9.7 \mathrm{kN}$
RB_Imposed $=7.6 \mathrm{kN}$
UB 178x102x19 (British Steel Section Range 2022 (BS4-1)) S355
$\max (\mathrm{T}, \mathrm{t})=7.9 \mathrm{~mm}$
$p_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 0 5 0 0 0} \mathrm{N} / \mathrm{mm}^{2}$
Span 1 has lateral restraint at supports only
$K_{x}=1.00$
$K_{y}=1.00$
$\mathrm{K}_{\text {LT.A }}=1.40+2 \times \mathrm{D}$
$K_{\text {LT. }}=1.40+2 \times D$
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{py}\right]=\mathbf{0 . 8 8}$
$\mathrm{d}=146.8 \mathrm{~mm}$
$\mathrm{d} / \mathrm{t}=34.7 \times \varepsilon<=80 \times \varepsilon \quad$ Class 1 plastic
$\mathrm{b}=\mathrm{B} / 2=\mathbf{5 0 . 6} \mathrm{mm}$
b / T $=7.3 \times \varepsilon<=9 \times \varepsilon \quad$ Class 1 plastic
Section is class 1 plastic

Shear capacity - Section 4.2.3
Design shear force

Shear area
Design shear resistance
Moment capacity - Section 4.2.5
Design bending moment
Moment capacity low shear - cl.4.2.5.2
Effective length for lateral-torsional buckling - Section 4.3.5
Effective length for lateral torsional buckling
Slenderness ratio
Equivalent slenderness - Section 4.3.6.7
Buckling parameter
Torsional index
Slenderness factor
Ratio - cl.4.3.6.9
Equivalent slenderness - cl.4.3.6.7
Limiting slenderness - Annex B.2.2

Bending strength - Section 4.3.6.5

Robertson constant
Perry factor
Euler stress
$\mathrm{F}_{\mathrm{v}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\max }\right), \mathrm{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=56.5 \mathrm{kN}$
$\mathrm{d} / \mathrm{t}<70 \times \varepsilon$
Web does not need to be checked for shear buckling
$\mathrm{A}_{\mathrm{v}}=\mathrm{t} \times \mathrm{D}=853 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=181.8 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \operatorname{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\min }\right)\right)=\mathbf{1 8 . 7} \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=60.8 \mathrm{kNm}$

Registered Office Address:
C/O Accrue Accounting, Bayside Business Centre, Unit 1 Sovereign Business Park, Willis Way, Poole, Dorset, BH15 3TB

STRUCTURAL AND CIVIL ENGINEERS Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD C01980677722 1 admin@jcpengineers.co.uk	Project Ref:	16469
	Page No:	16
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Proect type: Proposed Workshop and Store	Date:	Oct 23

Bending strength - Annex B.2.1
Equivalent uniform moment factor - Section 4.3.6.6
Equivalent uniform moment factor for LTB
Buckling resistance moment - Section 4.3.6.4
Buckling resistance moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection	$\delta_{\text {lim }}=L_{s 1} / 250=\mathbf{1 1 . 1 4} \mathrm{mm}$
Maximum deflection span 1	$\delta=\max \left(\operatorname{abs}\left(\delta_{\text {max }}\right), a b s\left(\delta_{\text {min }}\right)\right)=\mathbf{3 . 7 1 2} \mathrm{mm}$

Maximum deflection span 1
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=3.712 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

- \sim STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 admin@jcpengineers.co.uk	Page No:	17
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

BEARINGS

Bearing A

Masonry details

Masonry type

Compressive strength
Least horiz dim of units
Masonry units
Partial safety factor
Leaf thickness
Wall height

Bearing details

Beam spanning in plane of wall
Width of bearing
Loading details
Concentrated dead load
Design concentrated load
Distributed dead load
Design distributed load
Masonry bearing type
Bearing type

Aggregate concrete blocks (25\% or less formed voids)
punit $=3.6 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Mortar designation iii
lunit $=\mathbf{1 0 0 ~ m m} \quad$ Height of units $\quad h_{\text {unit }}=\mathbf{2 1 5} \mathrm{mm}$
Category II
$\gamma_{\mathrm{m}}=3.5$
Construction control
Normal
Characteristic strength
Effective wall thickness
$\mathrm{f}_{\mathrm{k}}=3.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{t}=\mathbf{1 0 0} \mathrm{mm}$
Effective height of wall
$\mathrm{t}_{\text {ef }}=\mathbf{1 0 0} \mathrm{mm}$
$h_{\text {ef }}=\mathbf{2 4 0 0} \mathbf{~ m m}$

Check design bearing without a spreader
$\mathrm{f}_{\mathrm{ca}}=1.486 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Allowable bearing stress $\quad \mathrm{f}_{\mathrm{cp}}=1.000 \mathrm{~N} / \mathrm{mm}^{2}$
FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader
$\mathrm{I}_{\mathrm{s}}=\mathbf{6 0 0} \mathrm{mm}$
Depth of spreader
$\mathrm{h}_{\mathrm{s}}=\mathbf{2 1 5} \mathrm{mm}$
Edge distance
Spreader bearing type
Bearing type Type 3
Bearing safety factor
$\gamma_{\text {bear }}=2.00$
Check design bearing with a spreader
Loading acts eccentrically outside middle third - triangular stress distribution
Design bearing stress $\quad f_{c a}=1.981 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Allowable bearing stress $\quad f_{c p}=2.000 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Allowable bearing stress exceeds design bearing stress
Check design bearing at $0.4 \times \mathrm{h}$ below the bearing level
Design bearing stress $\quad \mathrm{f}_{\mathrm{ca}}=0.397 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Allowable bearing stress $\quad \mathrm{f}_{\mathrm{cp}}=0.605 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Allowable bearing stress at $0.4 \times h$ below bearing level exceeds design bearing stress

-2 STRUCTURAL AND CIVIL ENGINEERS	Project Ref:	16469
Unit 7, Boscombe Centre, Mills Way, Amesbury, Wiltshire, SP4 7SD © 01980677722 admin@jcpengineers.co.uk	Page No:	18
Site Address: Amesbury Cricket Club, Archers Way, Amesbury	Engineer:	DA
Project type: Proposed Workshop and Store	Date:	Oct 23

Bearing B

Masonry details

Masonry type
Compressive strength
Aggregate concrete blocks (25\% or less formed voids)
Least horiz dim of units
Masonry units
punit $=3.6 \mathrm{~N} / \mathrm{mm}^{2}$
lunit $=\mathbf{1 0 0 ~ m m}$
Mortar designation
Height of units Category II
Partial safety factor
$\gamma_{\mathrm{m}}=3.5$
$\mathrm{t}=100 \mathrm{~mm}$
$\mathrm{h}=\mathbf{2 4 0 0} \mathrm{mm}$
Construction control
Leaf thickness
Characteristic strength
Effective wall thickness
Normal

Wall height
Effective height of wall
$\mathrm{f}_{\mathrm{k}}=3.5 \mathrm{~N} / \mathrm{mm}^{2}$
$=100 \mathrm{~mm}$
Bearing details
Beam spanning in plane of wall
Width of bearing
Concentrated dead load
$B=100 \mathrm{~mm}$
Length of bearing
$\mathrm{l}_{\mathrm{b}}=200 \mathrm{~mm}$

Design concentrated load
$\mathrm{G}_{\mathrm{k}}=\mathbf{1 0} \mathrm{kN} \quad$ Concentrated imposed load
$\mathrm{Q}_{\mathrm{k}}=8 \mathrm{kN}$
Distributed dead load
Design distributed load
Masonry bearing type
Bearing type
preader
Check design bearing without a spres
Design bearing stress
$\mathrm{f}_{\mathrm{ca}}=1.287 \mathrm{~N} / \mathrm{mm}^{2}$
Distributed imposed load
$\mathrm{q}_{\mathrm{k}}=0.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{g}_{\mathrm{k}}=0.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{f}=0.0 \mathrm{kN} / \mathrm{m}$

Bearing safety factor
$\gamma_{\text {bear }}=1.50$

Check design bearing at $0.4 \times \mathrm{h}$ below the bearing level
Design bearing stress $\quad f_{c a}=0.222 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Allowable bearing stress exceeds design bearing stress
Allowable bearing stress $\quad \mathrm{f}_{\mathrm{cp}}=0.605 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Allowable bearing stress at $0.4 \times h$ below bearing level exceeds design bearing stress

